Math 1432

Bekki George bekki@math.uh.edu 639 PGH

Office Hours:

Mondays 1-2pm,
Fridays noon-1pm
(also available by appointment)

Class webpage:

http://www.math.uh.edu/~bekki/Math1432.html

So here is what we know so far:

$$\sum_{n=1}^{\infty} a_n \text{ diverges if } \lim_{n \to \infty} a_n \neq 0$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 Harmonic Series – diverges

$$\sum_{p=1}^{\infty} \frac{1}{n^p}$$
 P-Series – converges if p>1, diverges otherwise

$$\sum_{n=0}^{\infty} (r)^n \text{ Geometric - converges if } |r| < 1_{\text{to}} \frac{a_1}{1-r} \text{ and diverges if } |r| \ge 1$$

Basic Comparison Test:
$$\sum_{n=1}^{\infty} a_n, a_n > 0$$

1. If
$$a_n \ge b_n$$
 and $\sum_{n=1}^{\infty} b_n, b_n > 0$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges

2. If
$$a_n \le b_n$$
 and $\sum_{n=1}^{\infty} b_n, b_n > 0$ converges, then $\sum_{n=1}^{\infty} a_n$ converges

Limit Comparison Test:
$$\sum_{n=1}^{\infty} a_n, a_n \ge 0$$

If you know
$$\sum_{n=1}^{\infty} b_n, b_n \ge 0$$

1. If
$$\sum_{n=1}^{\infty} b_n$$
 converges and $\lim_{n\to\infty} \frac{a_n}{b_n} = L$ (*L* is any finite number), then $\sum_{n=1}^{\infty} a_n$ converges

2. If
$$\sum_{n=1}^{\infty} b_n$$
 diverges and $\lim_{n\to\infty} \frac{a_n}{b_n} > 0$, then $\sum_{n=1}^{\infty} a_n$ diverges

The Integral Test:

If f is positive, continuous and decreasing for $x \ge 1$ and $a_n = f(n)$, then

$$\sum_{n=1}^{\infty} a_n \text{ and } \int_{1}^{\infty} f(x) dx \text{ either both converge or both diverge.}$$

The Root Test:

Let $\sum a_k$ be a series with nonnegative terms. Suppose $(a_k)^{1/k} \to \rho$, then

- 1. $\sum a_k$ converges if $\rho < 1$
- 2. $\sum a_k$ diverges if $\rho > 1$
- 3. The test is inconclusive if $\rho = 1$

The Ratio Test:

Let $\sum a_k$ be a series with positive terms. Suppose $\frac{a_{k+1}}{a_k} \to \lambda$, then

- 1. $\sum a_k$ converges if $\lambda < 1$
- 2. $\sum a_k$ diverges if $\lambda > 1$
- 3. The test is inconclusive if $\lambda = 1$

Popper 25

1. Use the Ratio test to determine if the following are convergent or divergent (or if test is inconclusive).

$$\sum \frac{2^n}{n!}$$

$$2. \sum_{n=0}^{\infty} \left(\frac{1-5^n}{6^n} \right)$$

3.
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{n!}$$

4.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+3}}{n^3}$$

$$5. \quad \sum_{n=1}^{\infty} \left(-1\right)^n$$

$$6. \sum_{n=1}^{\infty} \frac{n^2}{n^5 + 4n + 3}$$

9.6 Absolute Convergence and Alternating Series

An alternating series is a series whose terms alternate in sign. For example:

$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots = \sum_{n=1}^{\infty} \left(-1\right)^{n-1} \left(\frac{1}{2^{n-1}}\right)$$

Alternating Series Test:

If an alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} (a_n) = a_1 - a_2 + a_3 - a_4 + \cdots, \quad a_n > 0$

satisfies (i) $a_n \ge a_{n+1}$ for all n (non increasing) AND (ii) $\lim_{n\to\infty} a_n = 0$ then the series is convergent.

Examples:

$$\sum_{1} \frac{(-1)^n}{\sqrt{n^2 - 1}}$$

$$2. \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} \sqrt{n^3 + 1}}{n+3}$$

3. $\sum (-1)^n$

If an alternating series converges, it can be classified as either absolutely convergent or conditionally convergent.

If the series $\sum |a_n|$ is convergent, then $\sum a_n$ is convergent. We say that $\sum a_n$ is absolutely convergent.

If the series $\sum a_n$ is convergent and the series $\sum |a_n|$ is divergent, we say that $\sum a_n$ is **conditionally convergent**.

Examples:

4.
$$\sum \frac{(-1)^n}{\sqrt{n^2-1}}$$

 $5. \sum \frac{\sin(\frac{\pi}{2}k)}{k\sqrt{k}}$

 $6. \quad \sum \left(-1\right)^n \frac{n}{\sqrt{n^2 - 1}}$

 $\sum_{7.} \left(-1\right)^k \left(\sqrt{k+1} - \sqrt{k}\right)$

If a convergent alternating series satisfies the condition $0 < a_{n+1} < a_n$, then the remainder R_N involved in approximating the sum S by S_N is less in magnitude than the first neglected (truncated) term. That is, $|R_N| = |S - S_N| \le |a_{N+1}|$

Examples:

1. Approximate the sum of $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{n!}\right)$ by its first six terms and find the error.

2. Find the smallest integer *n* so that s_n will approximate $\sum_{k=0}^{\infty} \frac{\left(-1\right)^k}{k^2 + 2}$ to within 0.01

$$\sum_{k=2}^{\infty} \frac{(-1)}{k^2 + 2}$$
 to within 0.01

Popper 25

7. Determine whether the series converges absolutely, converges conditionally or diverges.

$$\sum \frac{\cos(\pi k)}{k\sqrt{k}}$$