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So here is what we know so far:
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Basic Comparison Test: zan » 0
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1. If a,2b,and 2.b..b, >0 diverges, then 2.4, diverges
n=1 n=1

2.If @, <b,and 2.b,.b, >0 converges, then 2.4, converges
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Limit Comparison Test: Zan ,a, 20

n=l1

If you know an’bn 20

1. If 2 n converges and hm =L (L is any finite number),then Za

n

converges
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2.1f 2 n diverges and iﬂg— >0 then Z{an diverges
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The Integral Test:
If f 1s positive, continuous and decreasing for x > 1 and a, = f(n), then

Z:{an and .[ J(%)dx gither both converge or both diverge.



The Root Test:

Let Zak be a series with nonnegative terms. Suppose (ak)% — P, then
1. Zak converges if p <1
2. Zak diverges if p>1
3.The test is inconclusive if P =1

The Ratio Test:

Let Zak be a series with positive terms. Suppose CZC? = A , then

1. Zak converges if 4 <1
2. .4, diverges if 1> 1

3.The test is inconclusive 1f A=1
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1. Use the Ratio test to determine if the following are convergent or divergent (or
if test 1s inconclusive).
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9.6 Absolute Convergence and Alternating Series

An alternating series is a series whose terms alternate in sign. For example:
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Alternating Series Test:
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If an alternating series 2(_1)”—1 (an) =aq-a,ta,—a,+, a,>0

n=1

satisfies (i) @, 2%, for all n (non increasing) AND (ii) lima, =0 then the series
1s convergent.



Examples:




If an alternating series converges, it can be classified as either absolutely
convergent or conditionally convergent.

an

If the series 2 1s convergent, then Zan 1s convergent. We say that Ea" 1S
absolutely convergent.

If the series Zan 1s convergent and the series 2 d,|1s divergent, we say that

Ean is conditionally convergent.



Examples:

I



sin(% k)

Kk






X)) (Ve 1=k



If a convergent alternating series satisfies the condition 0 < a,;; < a,, then the
remainder Ry involved in approximating the sum S by Sy is less in magnitude

R |=|S-5,|<l|a,,

than the first neglected (truncated) term. That is,

Examples:
1

n_!j by its first six terms and find the error.

1. Approximate the sum of g(_l)n+ (



2. Find the smallest integer n so that s, will approximate 2 to within 0.01

k=0
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7. Determine whether the series converges absolutely, converges conditionally or
diverges.
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