Math 2433
12021 - SR 117 - MWF 12-1

Bekki George: bekki@math.uh.edu

University of Houston

February 10, 2017
Office Hours: Mondays 2-4pm, Thursdays 3-4pm
(also available by appointment)
Office: 639 PGH

Course webpage: www.casa.uh.edu
A collection of level curves can give a good representation of the 3-d graph.

Example 1: Identify the level curves for $c = \{-2, -1, 0, 1, 2\}$ and sketch the curves corresponding to the indicated values of c for $f(x, y) = x^2 - y^2$
Example 2: Identify the c-level surface at $c = 0$

\[f(x, y, z) = 4x^2 - 9y^2 - 72z. \]

Solution:
1. Identify the level curve of \(f(x, y) = \frac{x^2}{x - y^2} \)

a. parabolas
b. hyperbolas
c. ellipses
d. exponentials
e. circles
14.4 Partial Derivatives

For functions of two variables:

The partial derivative of f with respect to x is the function f_x obtained by differentiating f with respect to x, treating y as a constant.

The partial derivative of f with respect to y is the function f_y obtained by differentiating f with respect to y, treating x as a constant.
14.4 Partial Derivatives

For functions of three variables:

The partial derivative of f with respect to x is the function f_x obtained by differentiating f with respect to x, treating y and z as constants.

The partial derivative of f with respect to y is the function f_y obtained by differentiating f with respect to y, treating x and z as constants.

The partial derivative of f with respect to z is the function f_z obtained by differentiating f with respect to z, treating x and y as constants.
Example 1: Find all first partial derivatives of \(f(x, y) = 3x^2 - 2y + xy \).

Solution:
14.4 Partial Derivatives

Example 2: Find all first partial derivatives of
\[f(x, y) = e^{x+y^2} + \ln \left(\frac{x}{x^2 + y} \right). \]

Solution:
Example 3: Find all first partial derivatives of
\[f(x, y, z) = 3x^2 z - e^y \sqrt{z} + \sqrt{x^2 + y^2}. \]
Solution:
Given \(f(x, y) = e^{\sin(x)} + x^5 y + \ln(1 + y^2) \)

2. Find \(f_x \)

3. Find \(f_y \)

(answer choices for both)
In the cases of higher order derivatives:

\[(f_x)_x = f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}\]

\[(f_x)_y = f_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}\]

\[(f_y)_x = f_{yx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}\]

\[(f_y)_y = f_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2}\]
Example 1: Find all first and second partial derivatives of
\(f(x, y) = 2x^2 \cos(y) + 3y^2 \sin(x) \).

Solution: