The program may be used as a regular calculator.

- + to add
- - to subtract
- * to multiply
- / to divide
- ^ to raise to a power
- sqrt to square root; any other root, use a fractional exponent

To enter a data set

- c()

The cursor will then appear inside the parenthesis and you’ll enter the data set, separating each number with a comma. Lastly, hit enter.

Name a data set

- name = c()

Mean of a data set

- mean(name of data set) or mean(enter the data set)

Median of a data set

- median(name of data set) or median(enter the data set)

Sort data

- sort(name of data set) or sort(enter the data set)

Variance of a data set

- var(name of data set) or var(enter the data set)

Standard Deviation of a data set

- sd(name of data set) or sd(enter the data set)

Five Number Summary

- fivenum(name of data set) or fivenum(enter data set)

Factorial

- factorial(number)

For permutations, use the factorial command.

Combination

- choose(n, r)

Binomial Distributions

- \(P(X = k) = \text{dbinom}(k, n, p) \)
- \(P(X \leq k) = \text{pbinom}(k, n, p) \)
- \(P(X > k) = 1 - \text{pbinom}(k, n, p) \)

In the command, \(n \) = number of trials, \(k \) = number of successes and \(p \) = probability of success

Geometric Distributions

- \(P(X = n) = \text{dgeom}(n - 1, p) \)
- \(P(X \leq n) = \text{pgeom}(n - 1, p) \)
- \(P(X > n) = 1 - \text{pgeom}(n - 1, p) \)

where \(n \) = nth trial and \(p \) = probability of success

Normal Distributions

- \(P(X < b) = \text{pnorm}(b, \mu, \sigma) \)
- \(P(X > a) = 1 - \text{pnorm}(a, \mu, \sigma) \)
- \(P(a < X < b) = \text{pnorm}(b, \mu, \sigma) - \text{pnorm}(a, \mu, \sigma) \)

If the random variable is the standard normal variable, then leave \(\mu \) and \(\sigma \) blank.
• $P(X < c) = p$, command: `qnorm(p, \mu, \sigma)`
• $P(X > c) = p$, command: `qnorm(1 - p, \mu, \sigma)`
• $P(-c < X < c) = p$, command: `qnorm((p+1)/2, \mu, \sigma)`

If the random variable is the standard normal variable, then leave μ and σ blank.

Correlation
- $\text{cor}(x,y)$.

Coefficient of Determination
- $\text{cor}(x,y)^2$

Least Square Regression Line (LSRL)
- `lm(y~x)`

Residuals of the LSRL
- `resid(lm(y~x))`

Draw the LSRL through the scatterplot
- `abline(lm(time~age))`

Draw a horizontal line at 0 through the residual plot
- `abline(0,0)`

N random integers from a to b
- `sample(a:b,N)`

Scatterplot
- `plot(name of x data set,name of y data set,pch=16,cex=2,cex.lab=2,cex.axis=2)`

In the command, `pch = 16` for filled dots, `cex = 2` for larger dots, `cex.lab = 2` for larger labels, and `cex.axis = 2` for larger tickmarks

z^*
- $z^* = \text{qnorm}\left(\frac{1 + \text{confidence level}}{2}\right)$
- $\text{qnorm}(\text{area to the left}) =$ critical value for the z-distribution
- $\text{pnorm}(z) =$ area to the left
- $1 - \text{pnorm}(z) =$ area to the right

t^*
- $t^* = \text{qt}\left(\frac{1 + CL}{2}, df\right)$
- $\text{qt}(\text{area to the left}, df) =$ critical value for the t-distribution
- $\text{pt}(t, df) =$ area to the left
- $1 - \text{pt}(t, df) =$ area to the right
Graphs

- `barplot(name of data set, names.arg=c("name of first bar", "name of second bar", etc))`

- `pie(name of data set, labels=c("name of first section", "name of second section", etc))`

- `stripchart(name of data set, method="stack", pch=16, cex=2, offset=1)`

 This command gives a dot plot.

 In the command, pch = 16 for filled dots, cex = 2 for larger dots and offset for spacing out dots.

- `stem(name of data set)`

- `hist(name of data set)`

- `boxplot(name of data set, horizontal=TRUE)`

 In the command, horizontal=TRUE for a horizontal boxplot. The word true must be capitalized.