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The Conditional Probability of an event 4 given that event B has occurred
1s given by

P(AlB):P(AﬂB)

x = P(B)

O N

Vf&o(\ N %N
T 'IED’ &n;ﬂ,‘/'bdo
APU} n8) = P[F}/B) PC‘%) ] tvends A+B

where P(B) #0

<N0+e,: P(AnB) = PA) - P(B) lfun events
A+ B [NOECENAT )



Ex: Suppose that of all individuals buying a certain digital camera, 60%
include an optional memory card in their purchase, 40% include an extra
battery, and 30% include both a card and battery. Consider randomly
selecting a buyer and let

( A = {memory card purchased}

B = {battery purchased}

Given that the selected individual purchased an extra battery, determine the
probability that a memory card was also purchased.
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Ex: A news magazine publishes three columns entitled “Art” (4), “Books”
(B), and “Cinema” (C). Reading habits of a randomly selected reader with
respect to these columns are
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Determine the probability that the reader reads the art column if it 1s known
that he read the bogks column. 3
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Determine the probability that he reads the art column given that he has
read at least one of the other columns.
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Determine the probability the reader will read the art column given that he

will read at least one column.
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The Law of Total Probability
Theorem:

Let 4> 4,;--s 4, be mutually exclusive and exhaustive events. Then for any

event B,
P(B)=P(B|4)P(4)+P(B|4,)P(4,)+..+P(B|4,)P(4)
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Ex: An individual has 3 different email accounts. Most of her messages, in
fact 70%, come into account #1, whereas 20% come 1nto account #2, and
the remaining 10% come into account #3. Of the messages into account #1,
only 1% are spam, whereas the corresponding percentages for accounts #2
and #3 are 2% and 5% respectively. What is the probability that a
randomly selected message is spam?
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Bayes’ Theorem
If a random experiment can result in £ mutually exclusive and exhaustive
outcomes 4;,4,,4,,...4,, then for an event B
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Ex: Suppose that we know that 5 percent of the population have a certain
disease. Suppose also, that no test for the disease is 100% accurate. A
particular screening for the disease is proposed. In tests it is determined
that this screening will be positive for a person without the disease 2% of
the time, and the test will be negative for a person with the disease 8% of
the time.

Determine the probability that a person who has tested positive for the
disease does not have the disease. D 1S ¢6Se. -Jeg1— .1.3
D = h.&S d—LS—LM ¢ ( )
D'= no distuse h) D' | T P D nT
T = Jest pos
T= $est ne

¢ (as)(. ozs

PP[(D | 5 054 " (a5
D' )= 45

O[T p)-02 P07 Iy)=.98  =.3423
P(T/)5)=.08 PTID)=.9 _—



— A% (s)92) = P(DNT)

|
05 /
2 S 009 < o0

ng )‘” (D102 = P(D'NT)
T\.ﬁ% (.a€)(.a8) = P(Y'nT’)



