CUIN 7333
Notes: Sequences (part II)

More about recursive functions. Recall that we said a recursion formula is a formula that gives a,;; in terms
of one or more of the terms that precede ay,+ .
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a=a,=1 and a_,=a +a_,
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This second example is the R‘—:\ \O OO sequence. It can actually be shown
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that a, = and that if we found a sequence of ratios of consecutive terms , the
2" 5 a,
values would approach \/52 . the golden ratio (¢ =1.61803398875...). For more information on the

golden ratio see here: http://www.jimloy.com/geometry/golden.htm




Finding a formula for a sequence:

The first several terms of a sequence {a,} are given. Assume that the pattern continues as indicated and find

an explicit formula for a,. W
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Sequences can be bounded or unbounded.
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The sequence {an} is said to be
® jncreasing if an < an+1 for all n,
® nondecreasing if an < an+1 for all n,
® decreasing if an > an+1 for all n,
® nonincreasing if an > an+1 for all n.

A sequence that satisfies any of these conditions is called monotonic.

Example: Determine the boundedness and monotonicity of the sequence with a, as indicated.
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We are concerned with limits of sequences as n approaches infinity.
A sequence that has a limit is said to be convergent. A sequence that has no limit is said to be divergent.

Every convergent sequence is bounded and every unbounded sequence is divergent

HM - A bounded, nondecreasing sequence converges to its least upper bound; a bounded, nonincreasing
sequence converges to its greatest lower bound.
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Visualizing limits with Geogebra (free graphing software). http://www.geogebra.org/cms/




