
SEQUENCES:   
 
A function  f  whose domain is the set of positive integers is called a sequence.  The 
values   
 

…),3(),2(),1( fff , ),(nf …  
 
are called the terms of the sequence;  f(1)  is the first term,  f(2)  is the second term,  f(3)  
is the third term, . . . , )(nf   is the nth term, and so on.   
 
      In treating sequences, it is customary to use subscript notation instead of functional 
notation.  Thus, for a given sequence  f,  )1(f   is denoted by 1a ,  )2(f   by 2a ,  )3(f   by  

3a ,  …  ,  and  )(nf   by  na .  In this notation, we represent the sequence as 
 

…… ,,,,, 321 naaaa  . 
 

Examples 2.2:  Write the first four terms, the ninth term and the twentieth term of the 
sequence whose nth term is: 
 

(1)  
n

nan
1+

=     (2)  
12 +

=
n

nan  

 
(3)  n

na )1(−=     (4)  2)1( na n
n −=  

 
Solutions: 
 
To find the first four terms we substitute, successively,  4,3,2,1=n  in the formula for 

na .  The ninth and twentieth terms are found by substituting  9=n   and 20=n   in the 
formula for na .  The results are: 
 
  First four terms  Ninth term  Twentieth term 
 

(1) 
4
5,

3
4,

2
3,2     

9
10    

20
21  

 

(2) 
17
4,

10
3,

5
2,

2
1    

82
9    

401
20  

 
(3) 1,1,1.1 −−     1−    1 
 
(4) 16,9,4,1 −−    81−    400        
 
 



 
 
      Rather than giving an explicit formula for  na ,  sequences are sometimes specified by 
stating a method for finding the terms.  One such method is called a recursion formula or 
recurrence relation.  A recursion formula is a formula that gives  1na +   in terms of one or 
more of the terms that precede  1na + .  The starting value, or values, must also be given.  
We illustrate with some examples. 
 
Examples 2.3:  Find the first four terms and the nth term for the sequence specified by: 
 
(1)  31 =a   and  1 2n na a+ = ,    …,3,2,1=k  . 
 
(2)  11 =a   and  1 ( 1)n na n a+ = + ,    …,3,2,1=k  . 
 
Solutions: 
 
(1)  We are given  31 =a .  From the recursion formula 
 
  322 12 ⋅== aa , 
  323222 2

23 ⋅=⋅⋅== aa , 
  323222 32

34 ⋅=⋅⋅== aa . 
 

Based on this pattern, we conclude that  324
5 ⋅=a ,  325

6 ⋅=a ,  and, in general  
32 1 ⋅= −n

na . 
 

(2) Proceeding as in (1), 
 

11 =a , 
122 12 ⋅== aa , 

  1233 23 ⋅⋅== aa , 
12344 34 ⋅⋅⋅== aa  

 
Based on this pattern, we conclude that  5 5 4 3 2 1 120a = ⋅ ⋅ ⋅ ⋅ = ,   

6 6 5 4 3 2 1 720a = ⋅ ⋅ ⋅ ⋅ ⋅ = ,  and, in general,  ( 1)( 2) 3 2 1 !na n n n n= − − ⋅ ⋅ =" . *     
 
Example 2.4:  The sequence defined recursively by: 
 

1 2 2 11   and   n n na a a a a+ += = = +  

                                                 
* The product of the first  n  natural numbers is called  n  factorial and is denoted by  n!;  1!=1,  2!=2⋅1,  
3!=3⋅2⋅1, 4!=4⋅3⋅2⋅1,  etc. 



 
is known as the Fibonacci sequence.  The terms of the sequence are called the Fibonacci 
numbers.  The first nine Fibonacci numbers are 
 

1, 1, 2, 3, 5, 8, 13, 21, 34. 
 

It can be shown that 
 

( ) ( )1 5 1 5

2 5

n n

n n
a

+ − −
= . 

 
The Fibonacci numbers appear in a wide variety of applications ranging from the 
biological sciences to art and architecture.  The sequence of ratios of consecutive 
Fibonacci numbers approaches the number 
 

2
15 −  

 
which is the so-called golden ratio used by the Greeks thousands of years ago. 
 
      Here is another example of a sequence defined by a method for finding the nth term. 
 
Example 2.5:  List the first six terms of the sequence whose nth term na is the nth prime 
number. 
 
Solution:  13,11,7,5,3,2 654321 ====== aaaaaa .  It is interesting to note that 
there is no known formula for  na .  However, this is a perfectly well defined sequence 
since  na  is defined for each positive integer  n.       
 
 
 
      In treatments of sequences it is common to make statements such as “consider the 
sequence whose first four terms are 

…,
4
1,

3
1,

2
1,1 .” 

 
It is left to the reader: (1) to discover the pattern established by the terms, and (2) to 
determine a formula for the general term  na .  In this case, the pattern appears to suggest 
that  6/1,5/1 65 == aa ,  and, in general,  nan /1=  .  However, consider the sequence 
defined by 
 



⎥⎦
⎤

⎢⎣
⎡

⋅
−−−−−+=

524
1

24
29)4)(3)(2)(1(1 nnnn

n
an . 

 
As you can verify,  4/1,3/1,2/1,1 4321 ==== aaaa   and  295 =a .  The point of 
this example is:  listing the first few terms of a “sequence” does not, in fact, determine a 
specific sequence.  To determine a specific sequence you must be given a formula for the 
nth term or you must be given some method for determining the nth term (e.g., a 
recursion formula).  Statements such as “determine the sequence whose first four terms 
are 
 

…,,, 4321 aaaa ” 
 

must be qualified by a statement such as “assume that pattern continues as indicated.” 
 
Examples 2.6:   
 
(1)  The first four terms of a sequence na are given.  (a)  assume that the pattern continues 
as indicated and find the general formula for  na ;  and (b)  find a formula for  na   in 
which  2/5 π=a . 

…,
8
7,

6
5,

4
3,

2
1  

 
(2)  The first five terms of a sequence na are given.  (a)  assume that the pattern continues 
as indicated and find the general formula for  na ;  and (b)  find a formula for  na   in 
which  .766 =a  

…,
5
26,

4
17,

3
10,

2
5,2 −−  

 
 
 
 
Solutions: 
 

(1) (a)  
n

nan 2
12 −

=     

(b)  ⎥
⎦

⎤
⎢
⎣

⎡
−−−−−+

−
=

)24(12
11

48
)4)(3)(2)(1(

2
12 πnnnn

n
nan  

 

(2) (a)  
n

na n
n

1)1(
2

1 +
−= +  

 



(b)  ⎥⎦
⎤

⎢⎣
⎡ +−−−−−+

+
−= +

720
37

120
76)5)(4)(3)(2)(1(1)1(

2
1 nnnnn

n
na n

n       

 
 
Limits of sequences:  Let  na  be a given sequence.  We are often interested in the 
behavior of the terms as  n  gets larger and larger, symbolized by  ∞→n .  For example, 
consider the sequence  nan /1= .  Since  
 

nn
1

1
1

<
+

, nn aa <+1  

 
for all  n; the terms are decreasing in value.  Also, if  n  is large (say 1,000,000, or 
10,000,000),  1/n is close to  0.  Thus, we conclude that the terms of the sequence  

nan /1=   are decreasing and tending to  0.  Here is a graph of the sequence 
 

1 2 3 4 5 6 7 10

0.5

1

 
 
If we simply plot the values  nan /1=   on the real line, we get 

0 1

 
and we can see that the terms are “headed” toward  0;  they never “pass” zero because  
1/n > 0  for every positive integer  n.  Based on this behavior, we say that “the limit of  
1/n  as  n  tends to infinity is  0.  This is symbolized by 
 

1lim 0
n n→∞

=       or by      .01
∞→→ nas

n
 

 
      In general, if the terms of the sequence  na   approach a number  L  as ∞→n ,  then  
L  is called the limit of the sequence  na .  As suggested in the example above, this is 
symbolized by 
 



lim or byn nn
a L a L as n

→∞
= → →∞ . 

 
Examples 2.7:  Determine whether the given sequence has a limit as  ∞→n . 
 

(1)  
n

nan
1+

=     (2)  2

1
n

nan
−

=  

 
(3)  n

na )1(−=     (4)  2)1( na n
n −=  

 
Solutions: 
 
(1) We write out the first several terms of the sequence to get an idea of its behavior:  

 

…,
5
6,

4
5,

3
4,

2
3,2  . 

 
It appears that the terms are getting closer and closer to  1.   
 
 

   1 2 3 4 5 6

1

2

 
 
 
We can justify this conclusion by noting that 
 

.111
nn

nan +=
+

=  

 
For large  n,  na   is close to  1  since  1/n  is close to  0;  1na as n→ →∞ . 
 
(2) As in (1), we write out the first several terms 
 

…,
36
5,

25
4,

16
3,

9
2,

4
1,0  . 

 
 



1 2 3 4 5 6 10

0.1

0.2

 
 

It appears that the denominators of these fractions are growing much faster than the 
numerators and so we guess that  ∞→→ nasan 0 .  This conclusion is justified by 
writing 
 

2222

1111
nnnn

n
n

nan −=−=
−

=  

 
and noting that  ∞→→→ nasnandn 0/10/1 2 .  Therefore 0 .na as n→ →∞  
 
(3) Writing out the first several terms, we have 
 

…,1,1,1,1,1 −−−  . 
 

The terms simply “oscillate” between  −1  and  1;  the terms  na   are not getting close to  
one number  L  so the limit does not exist. 
 
(4) The first several terms of this sequence are 
 

…,36,25,16,9,4,1 −−− . 
 
 

  

1 2 3 4 5 6

-20

-10

10

20

30

 
 
 

The terms get arbitrarily large in absolute value and “oscillate” between positive and 
negative;  the sequence does not have a limit.       
 



 
Two special sequences:  We’ll conclude this section on sequences by considering two 
special types of sequences. 
 
 
Arithmetic sequences:  An arithmetic sequence is a sequence in which the difference of 
successive terms is a constant  d.  That is, a sequence  na  is an arithmetic sequence if 
 

1n na a d+ − =  
 

for every positive integer  n.  The number  d  is called the common difference  for the 
sequence.  Note that an arithmetic sequence is defined by a recursion formula.  
Arithmetic sequences are also called arithmetic progressions. 
 
 
Examples 2.8:  Determine whether the given sequence is arithmetic.  If it is, give the 
common difference. 
 
(1) 2, 5, 8, 11, . . . , …,13 −n . 
 
(2) 1, 4, 9, 16, . . .,  2n , . . . . 
 
(3)  22, 18, 14, . . . , …,264 +− n  
 
Solutions: 
 
(1)  [ ]1 3( 1) 1 3 1 3 3 1 3 1 3n na a n n n n+ − = + − − − = + − − + = .  The sequence is arithmetic;  d 
= 3. 
 
(2)  2 1 3 24 1 3; 9 4 5.a a a a− = − = − = − =   The sequence is not arithmetic. 
 
(3)  [ ]1 4( 1) 26 4 26 4 4 26 4 26 4.n na a n n n n+ − = − + + − − + = − − + + − = −   The sequence is 
arithmetic with  4.d = −       
 
 
      Suppose  na   is an arithmetic sequence with first term  1a a=  and common 
difference  d.  We will use the recursion formula to find a formula for  na .  From the 
definition, we know that  1n na a d+ = + .  Therefore 
 

2 3 2 4 3 5 4, 2 , 3 , 4 ,a a d a a d a d a a d a d a a d a d= + = + = + = + = + = + = + …  
 

and we conclude that   
 



( 1)na a n d= + − . 
 

 
Example 2.9:  Find the twelfth term of the arithmetic sequence whose first three terms 
are   
1, 5, 9, . . .  . 
 
Solution:  1 1 and 9 5 5 1 4a a d= = = − = − = .  Therefore,   
 

12 ( 1) 1 11(4) 45a a n d= + − = + = .       
 
 
Geometric sequences:  A geometric sequence, or geometric progression, is a sequence 
in which the ratio of successive terms is a nonzero constant  r.  That is, na  is a geometric 
sequence if and only if 
 

1n

n

a r
a
+ =  

 
for every positive integer  n.  The number  r  is called the common ratio.  Note that a 
geometric sequence is defined by a recursion formula: 
 

1n na r a+ = ⋅ . 
 
Examples 2.10:   
 
(1)  The sequence  8, 4, 2, 1, . . . , is a geometric sequence.  Find the common ratio and 
give the fifth term of the sequence. 
 

(2)  The sequence  …,
8
5,

4
5,

2
5,5 −−   is a geometric sequence.  Find the common ratio 

and give the sixth term. 
 
Solutions: 
 

(1)  The common ratio is  2

1

4 1
8 2

ar
a

= = = .  The fifth term is  5 4
1 1 11
2 2 2

a a= = ⋅ = . 

 

(2)  The common ratio is  2

1

5 / 2 1
5 2

ar
a

−
= = = − .  The sixth term is the fifth term times 

2/1− ; the fifth term is  .16/5)8/5)(2/1( =−−   Therefore, the sixth term is  .32/5−  
 



      Suppose that  na  is a geometric sequence with first term  aa =1 .  We’ll use the 
recursion formula to determine an expression for the general term na : 
 

…,,,, 4
45

3
34

2
232 raraararaararaaraa ⋅=⋅=⋅=⋅=⋅=⋅=⋅=  . 

 
Based on this pattern, we conclude that 
 

.1−⋅= n
n raa  

 
 
Example 2.11:  Find the seventh term of the geometric sequence whose first three terms 

are  …,
8
1,

2
1,2 −  . 

 
Solution:  The first term  2=a  and the common ratio  r  is   
 

.
4
1

2
2/1

−=
−  

 
Therefore, by the formula derived above, the seventh term is:  

2048
1

4
2)4/1(2 6

6
7 ==−=a . 

 
 
SERIES 
 
Let  …… ,,,,, 321 naaaa be a given sequence.  Suppose we are asked to add up all the 
terms of the sequence.  That is, suppose we are asked to calculate 
 

…… +++++ naaaa 321  . 
 
Since we can only add a finite number of numbers, it would appear that adding up all the 
terms of a sequence is an impossible task.  However, there are instances where we can 
assign a value, a number, to an “infinite sum.”  We’ll explore that possibility here. 
 
      A sum of the form 
 

…… +++++ naaaa 321  , 
 

where  na   is a given sequence, is called a series (also called an infinite series).   Since 
we can add up any finite collection of numbers, we’ll form a new sequence  nS  by 
adding up terms of the given sequence in a systematic manner. 
 



 Let   11 aS =  
  212 aaS +=  
  3213 aaaS ++=  
  43214 aaaaS +++=  
  · 
  · 
  · 
  nn aaaaS ++++= …321  
  · 
  ·   
  · 
 
This new sequence is called the sequence of partial sums of the given sequence  na . 
 
      The questions we want to address are:  (1)  Can we find a formula for the sequence 

nS  of partial sums derived from some given sequence  na ?  (2)  If the answer to (1) is 
“yes”, does  nS  have a limit, say  S,  as  ∞→n ?   
 
      If the answers to (1) and (2) are “yes”, then we say that the sum of all the terms of the 
sequence  na  is  S ;  we’ve added up infinitely many numbers and gotten a number!   
Here are some examples. 
 
Examples 2.12: 
 
1. Let  na  be the sequence defined by  .)1( 1+−= n

na   This is the sequence 
 

…,1,1,1,1 −−  
 
The sequence of partial sums is: 
 

  

#
01111

1111
011

1

4

3

2

1

=−+−=
=+−=

=−=
=

S
S
S
S

 

 
Based on these results, we conclude that  1=nS when  n is odd and  0=nS  when  n is 
even.  The sequence  nS   can be represented by 
 

⎭
⎬
⎫

⎩
⎨
⎧

=
even is    when  0
odd is    when  1

n
n

Sn       or by      .
2

)1(1 1+−+
=

n

nS      



 
Does  nS  have a limit as  ∞→n ? 

 

2. Let  na  be the sequence defined by  .
1

11
)1(

1
+

−=
+

=
nnnn

an  

 
The first three terms of the sequence of partial sums is: 
 

  

#
4
11

4
1

3
1

3
1

2
1

2
11

3
11

3
1

2
1

2
11

2
11

3

2

1

−=⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −=

−=⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −=

−=

S

S

S

 

What is  nS  for every positive integer  n?  Does  nS  have a limit as  n →∞ ? 
 
3. Let  na  be the sequence defined by  .nan =   This is the sequence of positive integers 
 

1,  2,  3,  4,  . . . , n, . . .  . 
 
The sequence of partial sums is: 
 

  

#
104321

6321
321

1

4

3

2

1

=+++=
=++=

=+=
=

S
S
S
S

 

 
What is  nS  for every positive integer  n?  Does  nS  have a limit as  ∞→n ? 
 
Solutions: 
 
1.  nS   does not have a limit;  the sequence “oscillates” between  0  and 1. 
 

2.  .  as  1;11 ∞→→−= nS
n

S nn   The “infinite” series has a finite sum: 

1
4
1

3
1

3
1

2
1

2
11 =+⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ − … . 

3.  The sequence  1, 2, 3, 4, …,  is an arithmetic sequence with  .1  and  11 == da    
 



nnSn +−+++= )1(21 …  
12)1( +++−+= …nnSn  

 
      Adding these two equations, we get 
 

).1(
 terms][   )1()1()1(2

+=
++++++=

nn
nnnnSn …

 

       
      Solving for  nS ,  we get the result 
 

.
2

)1(321 +
=++++=

nnnSn …  

 

      This says that the sum of the first  n  positive integers is  .
2

)1( +nn  

 
      The sequence of partial sums does not have a limit;  ∞→nS   as  .∞→n  
 
 
Arithmetic and geometric series:  Let  …,,,, 4321 aaaa    be an arithmetic sequence 
with first term   1 aa = and common difference  d.  Then, 
 

…,3,2,, 4321 daadaadaaaa +=+=+==  
and 
 

[ ] [ 2 ] [ ( 1) ]a a d a d a n d+ + + + + + + − +… …  
 

is an arithmetic series.  The sequence of partial sums is: 
 

  

1

2

3

4

( ) 2
( ) ( 2 ) 3 (1 2)
( ) ( 2 ) ( 3 ) 4 (1 2 3)

[1 2 3 ( 1)]n

S a
S a a d a d
S a a d a d a d
S a a d a d a d a d

S na n d

=
= + + = +
= + + + + = + +
= + + + + + + = + + +

= + + + + + −
#

…
#

 

 

Using our result in (3) above,  ( 1)1 2 3 ( 1)
2

n nn −
+ + + + − =…   (replace  n  by  n−1  in the 

formula)  and 
 



( 1)     or     [2 ( 1) ]
2 2n n

n n nS na d S a n d−
= + = + − . 

 
This is a formula for the sequence of partial sums of an arithmetic series. 
 
      Since  ( 1) ,na a n d= + −  it follows that  2 ( 1) [ ( 1) ] .na n d a a n d a a+ − = + + − = +  
Therefore, nS  can also be written as 
 

( ).
2n n
nS a a= +  

 
 
      Now suppose that  …,,,, 4321 aaaa   is a geometric sequence with first term  

.  ratiocommon  and  1 raa =   Then 
…,,,, 3

4
2

321 araaraaraaa ====  
and 

…… ++++++ −132 narararara  
 

is a geometric series.  The sequence of partial sums is: 
 
 

  

#
"

#
132

32
4

2
3

2

1

−+++++=

+++=

++=

+=
=

n
n ararararaS

arararaS

araraS

araS
aS

 

 
     Note first that if  r = 1,  then 
 

nS a a a a na= + + + + =" . 
        (n  a’s) 
 
     Now assume that  1.r ≠   Then 
 

132 −+++++= n
n ararararaS …  

and 
n

n arararararrS +++++= …432  
 



Subtracting the second equation from the first gives 
 

.)1(     and     n
n

n
nn araSrararSS −=−−=−  

 
Therefore, 

    provided  1.
1

n

n
a arS r

r
−

= ≠
−

 

 
This is a formula for the sequence of partial sums of a geometric series. 
 
     Let’s look at the behavior of nS   as  n → ∞.  We can rewrite our formula for  nS  as 
 

.
11 r
ar

r
aS

n

n −
−

−
=  

 
 
It is possible to show that if  1 < r < 1,  then  rn → 0  as  n → ∞,  and it follows that  

.
1

    and    0
1

1

r
aS

r
ar

n

n

−
→→

−

−

 

 
Therefore, if the common ratio  r  of a geometric series  satisfies  11 <<− r ,  (i.e.,  | r | < 1), 
then we define the (finite) sum of the infinite geometric series 
 

…… ++++++ −132 narararara  
 

to be 
 

, | | 1.
1

aS r
r

= <
−

 

 
  
 
Examples 2.13: 
 
1.  Find the sum of the first 8 terms of the arithmetic sequence   3, 7, 11, 15, . . . 
 

2. Find the sum of the first 6 terms of the geometric sequence  …,
8
3,

4
3,

2
3,3  . 

Does the infinite series 
 

…++++
8
3

4
3

2
33  

 



have a finite sum? 
 

 
Solutions: 
 
1. a = 3  and  d = 4.  Using the first arithmetic series formula, we have 
   

136)286(4]4)18()3(2[
2
8

8 =+=−+=S . 

 
      Using the second formula,  314)18(38 =−+=a   and 
 

.136)34(4]313[
2
8

8 ==+=S  

 

2.  .
2
1  and  3 == ra   Therefore 

.
32

189
64
636

64
116

2
1

64
113

2
11

2
113

6

6 =⎟
⎠
⎞

⎜
⎝
⎛=⎥⎦

⎤
⎢⎣
⎡ −=

⎥⎦
⎤

⎢⎣
⎡ −

=
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

=S  

 Since  1
2
1|| <=r ,  the infinite geometric series has the finite sum 

 

.6

2
1
3

2
11

3
1

==
−

=
−

=
r

aS  

 
 
 
Exercises: 
 
Find the first five terms and the eighth term of the following sequences. 
 
1.  nan 210 −=  
 

2.  
n

an 21
3
−

=  

 

3.  
1
42

2 +
−

=
n
nan  

 



4.  
n

an
18 +=  

 
5.  6=na  
 
6.  n

na )1(2 −+=  
 
7.  n

na )1.0(2 +=  
 

8.  
n

na n
n 2

1)1( 1 +
−= −  

 

9.  
2

)1(1 1+−+
=

n

na  

 

10.  
2

2
2 +

=
n

a
n

n  

 
Find the first five terms of the sequence defined by the given recursion formula.  If 
possible, find a formula for  an. 
 

11.  
2

1
,1 11

+
== +

n
n

a
aa  

 

12.  nn a
n

aa
1

1,1 11 +
== +  

 
13.  22,2 11 +== + nn aaa  
 
14.  12,1 11 ++== + naaa nn  
 
15.  1111 ,1 aaaaa nnn +++== −+ "  
 
16.  12,1 11 +== + nn aaa  
 
Determine whether the given sequence has a limit.  If it does, give the limit. 
 

17.  
n

nan
1−

=  

 

18.  
1

2

+
=

n
nan  



 

19.  2

1
n

nan
−

=  

 

20.  
n

na
n

n
)1(−+

=  

 

21.  
14

2
+

= n

n

na  

 

22.  
1

4
2 +

=
n

nan  

 
Determine whether the indicated sequence can be the first three terms of an arithmetic or 
geometric sequence, and, if so, find the common difference or common ratio and the 
general term  na . 

  

23. 11, 16, 21,...

24. 1,4,9,...

25. 2, 4,8,...

26. 7,6.5,6,...

1 1 127. , , ,...
2 6 18

28. 3,3,3,...

1 1 129. , , ,...
2 4 9

30. 7,14,28,...

− − −

−

 

 
Find the tenth term and the nth term of the given arithmetic sequence. 
 
31.  2, 6, 10, 14, . . .   
 
32.  11, 9, 7, . . . 
 



33.  3, 2.7, 2.4, 2.1, . . .  
 
34.  7, 6.5, 6, . . . 
 
Let  …,,, 321 aaa be an arithmetic sequence.  Find the indicated quantities. 
 
35.   .   and     find   ;2,7 1051 Sadaa ===  
 
36.   .   and     find   ;3,2 20101 Sadaa −===  
 
37.   .   and     find   ;1.0,5 20101 Sadaa ===  
 
38.   .   and     find   ;3/2,3/7 16161 Sadaa −===  
 
Find the tenth term and the nth term of the given geometric sequence. 
 
39.  8, 4, 2, 1, . . . 
 
40.  2, 6, 18, . . . 
 
41.  4, 1.2, 0.36, . . . 
 
42.  4, −6, 9, −13.5, . . . 
 
 Let  …,,, 321 aaa be a geometric sequence.  Find the indicated quantities. 
 
43.  .   and   find;2,3 661 Saraa −===  
 
44.  .   and   find;3/1,2 441 Saraa ===  
 
45.  .   and   find;2/3,1 441 Saraa ===  
 
46.  .   and   find;5.0,50 10101 Saraa ===  
 
Determine whether the geometric series has a finite sum.  If it does, find it. 
 

47.  …+−+−
8
1

4
1

2
11  

 
48.  50 + 25 + 12.5 + . . .  
 

49.  …++++
27
2

9
2

3
22  



 

50.  …++++
8
27

4
9

2
31  

 


