### **Identity Function – Handout 1**

Certain functions that are used repeatedly in mathematics are called special functions. These functions come from basic functions called parent functions. The parent function gives us a general idea of what the graph looks like. If you are familiar with the parent functions, it makes graphing the families of that function much easier.

### The Identity Function

One such parent function is the **identity function**. The equation is y = x and its graph is a line. It passes through the origin and its slope is 1.



From this parent comes a family of graphs called linear functions. A linear function's general equation is y = m(x - h) + k. (This can be written as y = mx + b when simplified.)

### **VERTICAL STRETCHING TRANSLATIONS**

y = x y = 1(x - 0) - 0 $y = 3x \qquad \qquad y = 3(x-0) - 0$ 

y = 8x y = 8(x-0)-0

I.

II.

Graph:

Graph:

 $y = \frac{1}{3}x$   $y = \frac{1}{3}(x-0) - 0$ 

 $y = \frac{2}{5}x$   $y = \frac{2}{5}(x-0)-0$ 

What conclusion can you make about the effect of the **value of m** on the graph of the parent function v = x?

# TRANSLATIONS REFLECTING ALONG THE X-AXIS

y = x y = 1(x - 0) - 0

y = -3x y = -3(x-0) - 0

y = -8x y = -8(x-0) - 0  $y = -\frac{1}{3}x y = -\frac{1}{3}(x-0) - 0$   $y = -\frac{2}{5}x y = -\frac{2}{5}(x-0) - 0$ 

What conclusion can you make about the effect of the **sign of m** on the graph of the parent function y = x?

### **VERTICAL SHIFT TRANSLATIONS**

$$y = x y = 1(x-0)-0$$

$$y = x+2 y = 1(x-0)+2$$
III. Graph: 
$$y = x+5 y = 1(x-0)+5$$

$$y = x-3 y = 1(x-0)-3$$

$$y = x-8 y = 1(x-0)-8$$

What conclusion can you make about the effect of **k** on the graph of the parent function y = x?

# **PHASE (HORIZONTAL) TRANSLATIONS**

$$y = x y = 1(x-0)-0$$

$$y = 1(x-2)+0$$

$$y = 1(x-6)+0$$

$$y = 1(x+3)+0$$

$$y = 1(x+7)+0$$

IV.

What conclusion can you make about the effect of **h** on the graph of the parent function y = x?

# **SUMMARY** y = m(x-h)+k

- 1) When |m| > 1, the line becomes <u>steeper</u> (a stretch). When |m| < 1, the line becomes <u>flatter</u> (a compression). When |m| = 1 there is no change in the <u>steepness</u> or <u>flatness</u> of the line.
- When m > 0 (i.e. positive) the line slants **up** and to the **right** and is **not reflected across the x**-**axis.**

When m < 0 (i.e. negative) the line slants **up** and to the **left** and is **reflected across the x-axis.** 

- The effect of **k** on the graph of the parent function y = x is called the **vertical shift**. If k > 0 (i.e. positive), the graph shifts **up k units**. If k < 0 (i.e. negative), the graph shifts **down k units**.
- 4) The effect of **h** on the graph of the parent function y = x is called the **phase shift** or **horizontal shift**.

When h>0 (i.e. (x-h)) the graph shifts to the **right h units**.

When h < 0 (i.e. (x + h)) the graph shifts to the **left h units**.

You can see that if you write the equation of a line in **point-slope form**, it is easy to make **4 conclusions** about the function in relation to the graph of its parent function y = x.

**Directions:** Based on the discovery lesson, answer the following and graph.

## I. For each problem:

- a) Name the function
- b) Name the parent function
- c) State the vertical stretch or compression
- d) Reflection?

- e) State the phase shift
- f) State the vertical shift
- g) Starting Point
- h) Graph

1. 
$$y = -4$$

2. 
$$y = -3x + 1$$

3. 
$$y = \frac{1}{3}x + 1$$

4. 
$$y = -(x+3)-4$$

5. 
$$y = 5x$$

6. 
$$y = \frac{2}{3}(x-2)+3$$

7.  $y = \pi$  8.  $y = -\frac{1}{4}(x-0)-5$  9. y = 0

a)\_\_\_\_\_

b)\_\_\_\_\_

b)\_\_\_\_\_

c)\_\_\_\_\_

c)\_\_\_\_\_

c)\_\_\_\_\_

d)\_\_\_\_\_

f) \_\_\_\_\_

f) \_\_\_\_\_

f) \_\_\_\_\_

g) \_\_\_\_\_

g) \_\_\_\_\_

g) \_\_\_\_\_

#### II. For each graph:

- Name the function a)
- b) Name the parent function
- Write the equation from the graph in the form y = m(x-h)+kc)

1. a)\_\_\_\_\_

a)\_\_\_\_\_\_ 3.

a)\_\_\_\_\_

c)\_\_\_\_\_







**4.** a)\_\_\_\_\_\_ 6. a)\_\_\_\_\_

b)\_\_\_\_\_

c)\_\_\_\_\_

b)\_\_\_\_\_\_ b)\_\_\_\_\_

c)\_\_\_\_\_





