The Quadratic Function

The quadratic function is another parent function. The equation for the quadratic function is \(y = x^2 \) and its graph is a bowl-shaped curve called a parabola. The point \((0, 0)\) is called the vertex.

The vertex form for all quadratics is \(y = a(x - h)^2 + k \), and follows all the same rules for determining translations on the parent function except the slope. Notice the coefficient is in front of the squared term.

- If \(a = 1 \), the parabola is standard size and 2 points are graphed up 1 and over 1 on each side of the vertex.
- If \(a > 1 \), the parabola is skinnier which represents a vertical stretch. The graph is drawn between the basic points.
- If \(0 < a < 1 \), the parabola is wider which represents a vertical compression. The graph is drawn outside of the basic points.

Example 1. For each problem, write the equation in the vertex form \(y = a(x - h)^2 + k \).

<table>
<thead>
<tr>
<th></th>
<th>a) state the parent function</th>
<th>d) state the vertical stretch or compression</th>
<th>b) name the function</th>
<th>e) state the phase (or horizontal) shift</th>
<th>c) is there a reflection</th>
<th>f) state the vertical shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>(y = (x - 2)^2)</td>
<td></td>
<td>(y = x^2 + 4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>(y = x^2 + 4)</td>
<td></td>
<td>(y = -\frac{1}{4}(x + 1)^2 - 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) ________________ a) ________________ a) ________________
b) ________________ b) ________________ b) ________________
c) ________________ c) ________________ c) ________________
d) ________________ d) ________________ d) ________________
e) ________________ e) ________________ e) ________________
f) ________________ f) ________________ f) ________________
Example 2. Write the equation of each parabola from the graph and the given information.

\[a = 2 \text{ or } a = \frac{1}{2} \quad a = \frac{2}{3} \text{ or } a = 3 \]

\[a = 4 \text{ or } a = \frac{1}{4} \quad a = 10 \text{ or } a = \frac{1}{10} \quad a = .2 \text{ or } a = 5 \]
The Square Root Function

The square root function is another parent function. The equation of the square root function is \(y = \sqrt{x} \).

Fill in the chart of ordered pairs and look at the graph.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The graph should be a smooth curve that looks like half of a parabola.

What is the domain? _____________________

What is the range? ______________________

To determine the domain of a square root function without graphing, set the expression under the radical sign greater than or equal to zero. (The number under the square root must be 0 or a positive value.)

Example 1: Find the domain for the function \(y = 2x + 3 \).

Write the answer in interval notation.

\[
2x + 3 \geq 0 \\
2x \geq -3 \\
x \geq -\frac{3}{2}
\]

Answer: \(\left[-\frac{3}{2}, \infty \right) \)

Example 2: Find the domain for the function \(y = 3\sqrt{4x - 5} - 1 \).

The graphing form for all square root functions is \(y = a\sqrt{x - h} + k \). If \(a < 0 \), the graph is reflected across the \(x \)-axis. (a flip) The value of \(a \) will determine the vertical stretch or compression. The translations are determined by \(h \) and \(k \). Each point on the parent function moves horizontally \(h \) units and vertically \(k \) units.

Example 3: Graph \(y = 3\sqrt{x + 2} - 1 \)

Graph the parent function.
Each point on the parent function is moved horizontally to the left 2 units and vertically down 1 unit. The graph stays above the translated horizontal axis since \(a > 0 \).
Since the value of \(a \) is 3, each point on the parent function is 3 times as far from the translated horizontal axis.

Graph the new function. State the domain and range in interval notation.

\[D = \quad R = \]
Example 4: \(y = \frac{1}{2}\sqrt{x - 1} + 3 \)

D =

R =

Example 5: \(y = -4\sqrt{x} + 5 \)

D =

R =

Example 6: \(y = -\frac{1}{4}\sqrt{x + 1} \)

D =

R =

Example 7: \(y = 3\sqrt{x + 5} - 6 \)

D =

R =
The Cubic Function

The cubic function is a parent function with the equation \(y = x^3 \). The graph is shown below.

The translations are performed the same way as the other functions using the equation \(y = m(x - h)^3 + k \).

For each example explain the translations on the parent function to obtain the following graph.

Example 1. \(y = 2(x - 3)^3 + 1 \)
Example 2. \(y = -\frac{1}{3}(x + 2)^3 - 4 \)

Reflection ___________________________ Reflection ___________________________

Stretch or compression_________________ Stretch or compression_________________

Phase shift __________________________ Phase shift _________________________

Vertical shift _________________________ Vertical shift _______________________

\[
\begin{array}{c}
\text{Example 1:} \quad y = 2(x - 3)^3 + 1 \\
\text{Example 2:} \quad y = -\frac{1}{3}(x + 2)^3 - 4 \\
\end{array}
\]
The Rational Function

Another parent function is called the **rational function**. Its equation is \(y = \frac{1}{x} \).

Here is its graph:

![Graph of the rational function](image)

There is a vertical asymptote at \(x = 0 \) and a horizontal asymptote at \(y = 0 \).

Instead of graphing rational functions using vertical and horizontal asymptotes, we will look at the rational functions as a family of the parent function. We will use reflections, phase shifts and vertical shifts to graph the family of rational functions.

The general equation for all rational functions is:

\[
y = \frac{a}{x-h} + k
\]

where the sign of \(a \) determines a **reflection**, \(h \) determines the **phase shift** for the **vertical asymptote** and \(k \) determines the **vertical shift** for the **horizontal asymptote**. In this lesson we will not be concerned with finding exact values for the x and y intercepts. Our graph will be a rough sketch of the function.

Example 1: \(y = \frac{-1}{x} \)

\(a = -1 \) represents a reflection (the graph starts below the x-axis, starting with the positive side)

phase shift = 0

vertical shift = 0

Graph:
Example 2: \[y = -\frac{1}{x+3} - 2 \]

Graph:

- \(a = \)
- phase shift =
- vertical shift =

Example 3: Write the equation from the graph in the form \[y = \frac{a}{x-h} + k \]

Graph:

- reflection ?
- phase shift
- vertical shift