T³ Workshop
Piecewise Functions

Bekki George
bekki@math.uh.edu
Math Resource Site

http://online.math.uh.edu/hsmath/
Over 40 Online Quizzes and AP Practices Exams

http://www.estudy.uh.edu/
Define a piecewise function...
Define a piecewise function...

• a function whose definition changes depending on the value of the independent variable

• a function that is given by different expressions on various intervals
Evaluating piecewise functions:

\[f(x) = \begin{cases}
 x^2 + 1 & x < 2 \\
 3 - x & 2 \leq x
\end{cases} \]

\[f(x) = \begin{cases}
 2x - 3 & x < 2 \\
 5 & x = 2 \\
 x + 1 & 2 < x
\end{cases} \]
Graphing piecewise functions on TI-83/84:

\[f(x) = \begin{cases}
2x + 3 & x < -1 \\
x^2 & -1 \leq x \text{ and } x \leq 2 \\
6 - x & 2 < x
\end{cases} \]

Choose Y=

Enter first function in () with conditional next to it in ()

Use 2nd Math for inequality symbols

Let's graph what we have so far.
Suggestions on graphing other “pieces”?

\begin{align*}
\text{Plot1} & \quad Y_1 = (2X + 3) \quad (X < -1) \\
\text{Plot2} & \quad Y_2 = X^2 \quad (-1 \leq X \leq 2) \\
\text{Plot3} & \quad Y_3 = (6 - X) \quad (X > 2) \\
\text{Plot4} & \quad Y_4 = \text{for graphing other “pieces”} \\
\text{Plot5} & \quad Y_5 = \text{for graphing other “pieces”}
\end{align*}
We have a problem with the compound inequality \((-1 \leq x \leq 2)\).

There are two ways to correct this – use one of the following:

\((-1 \leq x)(x \leq 2)\)

or

\((-1 \leq x \text{ and } x \leq 2)\)

I like to use the second method. To get the “and” operator:

```
TEST       LOGIC
1: and
2: or
3: xor
4: not
```
Now we have:

\[Y_1 = (2x + 3)(x < -1) \]
\[Y_2 = x^2 \quad (-1 \leq x \text{ and } x \leq 2) \]
\[Y_3 = (6-x)(x > 2) \]
\[Y_4 = \]
\[Y_5 = \]

Let’s change this up a bit. What if the third “piece” was \((x+1)\)?
Next, what if we want to evaluate different values for our function using the calculator?

We can make these 3 functions into one
Now we can evaluate any value with just one function:

\[Y_1(-5) = -7 \]
\[Y_1(1) = 1 \]
\[Y_1(8) = -2 \]
How about a table:

<table>
<thead>
<tr>
<th>X</th>
<th>Y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.97</td>
<td>.94</td>
</tr>
<tr>
<td>-.98</td>
<td>.96</td>
</tr>
<tr>
<td>-.99</td>
<td>.98</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>-.99</td>
<td>.9801</td>
</tr>
<tr>
<td>-.98</td>
<td>.9604</td>
</tr>
<tr>
<td>-.97</td>
<td>.9409</td>
</tr>
</tbody>
</table>

Note: your y-values may be rounded. If you arrow over to the y-value, it will show to more decimal places below.
TI-89:
\[f(x) = \begin{cases}
2x + 3 & x < -1 \\
x^2 & -1 \leq x
\end{cases} \]

Press [F1] and select y1=

Press [CATALOG] and then “when” (instead of scrolling, choose alpha-w)

the < and > are located above ‘0’ and ‘.’
Note: Sometimes the TI calculators “connect” the graphs when they shouldn’t. In this case, you want to be in “Dot” mode.

For the TI-89, if you have more than two pieces, you will need to have nested when statements:

\[f(x) = \begin{cases}
2x + 3 & x < -1 \\
2x^2 & -1 \leq x \text{ and } x \leq 2 \\
6 - x & 2 < x
\end{cases} \]

Would be input as \(y1=\text{when}(x<-1,2\cdot x+3,\text{when}(x\leq2,x^2,6-x)) \)
Let’s try some more:

\[f(x) = \begin{cases}
 x - 4 & x < 1 \\
 2 - x^2 & 1 \leq x
\end{cases} \]

\[f(x) = \begin{cases}
 3 & x < -2 \\
 x^3 & -2 \leq x \text{ and } x < 3 \\
 2x + 1 & 3 \leq x
\end{cases} \]

\[f(x) = |x| \]
Limits:

How can we use this with limits?

Given:

\[f(x) = \begin{cases}
2x - 5 & x \neq 1 \\
4 & x = 1
\end{cases} \]

Find \(\lim_{x \to 1} f(x) \)

Graph:

Table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85</td>
<td>3.3</td>
</tr>
<tr>
<td>0.9</td>
<td>3.2</td>
</tr>
<tr>
<td>0.95</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>1.05</td>
<td>2.8</td>
</tr>
<tr>
<td>1.1</td>
<td>2.5</td>
</tr>
<tr>
<td>1.15</td>
<td>2.2</td>
</tr>
<tr>
<td>(x = 0.85)</td>
<td></td>
</tr>
</tbody>
</table>

On the TI-89, enter \(y_1=\text{when}(x \neq 1,2x-5,4) \). The \(= \) is obtained by pressing [+]