Trigonometric formulas

<table>
<thead>
<tr>
<th>Formula</th>
<th>Formula</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin^2 \theta + \cos^2 \theta = 1$</td>
<td>$1 + \tan^2 \theta = \sec^2 \theta$</td>
<td>$1 + \cot^2 \theta = \csc^2 \theta$</td>
</tr>
<tr>
<td>$\sin(-\theta) = -\sin \theta$</td>
<td>$\cos(-\theta) = \cos \theta$</td>
<td>$\tan(-\theta) = -\tan \theta$</td>
</tr>
<tr>
<td>$\sin(A + B) = \sin A \cos B + \sin B \cos A$</td>
<td>$\sin(A - B) = \sin A \cos B - \sin B \cos A$</td>
<td>$\cos(A + B) = \cos A \cos B - \sin A \sin B$</td>
</tr>
<tr>
<td>$\cos(A + B) = \cos A \cos B - \sin A \sin B$</td>
<td>$\cos(A - B) = \cos A \cos B + \sin A \sin B$</td>
<td>$\sin 2\theta = 2\sin \theta \cos \theta$</td>
</tr>
<tr>
<td>$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$</td>
<td>$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{1}{\cot \theta}$</td>
<td>$\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta}$</td>
</tr>
<tr>
<td>$\sec \theta = \frac{1}{\cos \theta}$</td>
<td>$\csc \theta = \frac{1}{\sin \theta}$</td>
<td>$\cos \left(\frac{\pi}{2} - \theta\right) = \sin \theta$</td>
</tr>
<tr>
<td>$\sin \left(\frac{\pi}{2} - \theta\right) = \cos \theta$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Differentiation formulas

$\frac{d}{dx}(x^n) = nx^{n-1}$	$\frac{d}{dx}(fg) = f'g + fg'$	$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{g'f - fg'}{g^2}$
$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$	$\frac{d}{dx}(\sin x) = \cos x$	$\frac{d}{dx}(\cos x) = -\sin x$
$\frac{d}{dx}(\tan x) = \sec^2 x$	$\frac{d}{dx}(\cot x) = -\csc^2 x$	$\frac{d}{dx}(\sec x) = \sec x \tan x$
$\frac{d}{dx}(\csc x) = -\csc x \cot x$	$\frac{d}{dx}(e^x) = e^x$	$\frac{d}{dx}(a^x) = a^x \ln a$
$\frac{d}{dx}(\ln x) = \frac{1}{x}$	$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1-x^2}}$
$\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$		
Integration Formulas

<table>
<thead>
<tr>
<th>Integral Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\int ax , dx = ax + C$</td>
</tr>
<tr>
<td>$\int e^x , dx = e^x + C$</td>
</tr>
<tr>
<td>$\int \sin x , dx = -\cos x + C$</td>
</tr>
<tr>
<td>$\int \cot x , dx = \ln(\sin x) + C$</td>
</tr>
<tr>
<td>$\int \sec^2 x , dx = \tan x + C$</td>
</tr>
<tr>
<td>$\int \csc x \cot x , dx = -\csc x + C$</td>
</tr>
<tr>
<td>$\int \tan x , dx = \ln(\sec x) + C$ or $-\ln(\cos x) + C$</td>
</tr>
</tbody>
</table>

If the Integral Involves

<table>
<thead>
<tr>
<th>$a^2 - u^2$</th>
<th>$u = a \sin \theta$</th>
<th>$1 - \sin^2 \theta = \cos^2 \theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^2 + u^2$</td>
<td>$u = a \tan \theta$</td>
<td>$1 + \tan^2 \theta = \sec^2 \theta$</td>
</tr>
<tr>
<td>$u^2 - a^2$</td>
<td>$u = a \sec \theta$</td>
<td>$\sec^2 \theta - 1 = \tan^2 \theta$</td>
</tr>
</tbody>
</table>

Limits:

- $\lim_{x \to 0} \frac{\sin x}{x} = 1$
- $\lim_{x \to \infty} \frac{\sin x}{x} = 0$
- $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$

y = D + A \sin B(x - C)
A is amplitude
B is the affect on the period (stretch or shrink)
C is vertical shift (left/right) and **D** is horizontal shift (up/down)
Exponential Growth and Decay

\[y = Ce^{kt} \]

Rate of Change of a variable \(y \) is proportional to the value of \(y \)

\[\frac{dy}{dx} = ky \quad \text{or} \quad y' = ky \]

Formulas and theorems

1. A function \(y=f(x) \) is continuous at \(x=a \) if
 - \(f(a) \) exists
 - \(\lim_{x \to a} f(x) \) exists, and
 - \(\lim_{x \to a} f(x) = f(a) \)

2. Even and odd functions
 - A function \(y = f(x) \) is even if \(f(-x) = f(x) \) for every \(x \) in the function's domain. Every even function is symmetric about the y-axis.
 - A function \(y = f(x) \) is odd if \(f(-x) = -f(x) \) for every \(x \) in the function's domain. Every odd function is symmetric about the origin.

3. Horizontal and vertical asymptotes
 - A line \(y = b \) is a horizontal asymptote of the graph of \(y = f(x) \) if either \(\lim_{x \to \infty} f(x) = b \) or \(\lim_{x \to -\infty} f(x) = b \).
 - A line \(x = a \) is a vertical asymptote of the graph of \(y = f(x) \) if either \(\lim_{x \to a^+} f(x) = \pm \infty \) or \(\lim_{x \to a^-} f(x) = \pm \infty \).

4. Definition of a derivative

\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

5. To find the maximum and minimum values of a function \(y = f(x) \), locate
 - the points where \(f'(x) \) is zero or where \(f'(x) \) fails to exist
 - the end points, if any, on the domain of \(f(x) \).

Note: These are the only candidates for the value of \(x \) where \(f(x) \) may have a maximum or a minimum.
6. Let \(f \) be differentiable for \(a < x < b \) and continuous for \(a \leq x \leq b \).
 a. If \(f'(x) > 0 \) for every \(x \) in \((a,b) \), then \(f \) is increasing on \([a,b] \).
 b. If \(f'(x) < 0 \) for every \(x \) in \((a,b) \), then \(f \) is decreasing on \([a,b] \).

7. Suppose that \(f''(x) \) exists on the interval \((a,b) \).
 a. If \(f''(x) > 0 \) in \((a,b) \), then \(f \) is concave upward in \((a,b) \).
 b. If \(f''(x) < 0 \) in \((a,b) \), then \(f \) is concave downward in \((a,b) \).

To locate the points of inflection of \(y = f(x) \), find the points where \(f''(x) = 0 \) or where \(f''(x) \) fails to exist. These are the only candidates where \(f(x) \) may have a point of inflection. Then test these points to make sure that \(f''(x) < 0 \) on one side and \(f''(x) > 0 \) on the other.

8. Mean value theorem

 If \(f \) is continuous on \([a,b]\) and differentiable on \((a,b)\), then there is at least one number \(c \)

 \[
 \frac{f(b) - f(a)}{b - a} = f'(c)
 \]

9. Continuity

 If a function is differentiable at a point \(x = a \), it is continuous at that point. The converse is false, i.e. continuity does not imply differentiability.

10. L'Hôpital's rule

 \[
 \lim_{x \to a} \frac{f(x)}{g(x)} = \begin{cases} 0 & \text{if } g(x) \text{ is of the form } 0 \text{ or } \infty, \\ \infty & \text{if } g(x) \text{ is of the form } \infty \end{cases}
 \]

 \[
 \lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}
 \]

11. Area between curves

 If \(f \) and \(g \) are continuous functions such that \(f(x) \geq g(x) \) on \([a,b]\), then the area between

 the curves is \(\int_a^b (f(x) - g(x)) \, dx \).

12. Inverse functions

 a. If \(f \) and \(g \) are two functions such that \(f(g(x)) = x \) for every \(x \) in the domain of \(g \),
 and, \(g(f(x)) = x \), for every \(x \) in the domain of \(f \), then \(f \) and \(g \) are inverse functions
 of each other.
 b. A function \(f \) has an inverse if and only if no horizontal line intersects its graph
 more than once.
 c. If \(f \) is either increasing or decreasing in an interval, then \(f \) has an inverse.
 d. If \(f \) is differentiable at every point on an interval \(l \), and \(f'(x) \neq 0 \) on \(l \), then \(g = f^{-1}(x) \)
 is differentiable at every point of the interior of the interval \(f(l) \) and

 \[
 g'(f(x)) = \frac{1}{f'(x)}.
 \]
13. **Properties of** $y = e^x$
 a. The exponential function $y = e^x$ is the inverse function of $y = \ln x$.
 b. The domain is the set of all real numbers, $-\infty < x < \infty$.
 c. The range is the set of all positive numbers, $y > 0$.
 d. $\frac{d}{dx}(e^x) = e^x$
 e. $e^x \cdot e^x = e^{x+x}$.

14. **Properties of** $y = \ln x$
 a. The domain of $y = \ln x$ is the set of all positive numbers, $x > 0$.
 b. The range of $y = \ln x$ is the set of all real numbers, $-\infty < y < \infty$.
 c. $y = \ln x$ is continuous and increasing everywhere on its domain.
 d. $\ln(ab) = \ln a + \ln b$.
 e. $\ln(a/b) = \ln a - \ln b$.
 f. $\ln a^r = r \ln a$.

15. **Fundamental theorem of calculus**

 \[\int_a^b f(x)\,dx = F(b) - F(a), \text{ where } F'(x) = f(x), \text{ or } \frac{d}{dx} \int_a^b f(x)\,dx = f(x). \]

16. **Volumes of solids of revolution**
 a. Let f be nonnegative and continuous on $[a,b]$, and let R be the region bounded above by $y = f(x)$, below by the x-axis, and the sides by the lines $x = a$ and $x = b$.
 b. When this region R is revolved about the x-axis, it generates a solid (having circular cross sections) whose volume $V = \int_a^b \pi (f(x))^2 \,dx$.
 c. When R is revolved about the y-axis, it generates a solid whose volume $V = \int_a^b 2\pi \cdot x \cdot f(x)\,dx$.

17. **Particles moving along a line**
 a. If a particle moving along a straight line has a positive function $x(t)$, then its instantaneous velocity $v(t) = x'(t)$ and its acceleration $a(t) = v'(t)$.
 b. $v(t) = \int a(t)\,dt$ and $x(t) = \int v(t)\,dt$.

18. **Average y-value**

 The average value of $f(x)$ on $[a,b]$ is $\frac{1}{b-a} \int_a^b f(x)\,dx$.
Summary of Convergence Tests for Series

<table>
<thead>
<tr>
<th>Test</th>
<th>Series</th>
<th>Convergence or Divergence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>n^{th} term test (or the zero test)</td>
<td>$\sum a_n$</td>
<td>Diverges if $\lim_{n\to\infty} a_n \neq 0$</td>
<td>Inconclusive if $\lim_{n\to\infty} a_n = 0$.</td>
</tr>
<tr>
<td>Geometric series</td>
<td>$\sum_{n=0}^{\infty} a z^n$ (or $\sum_{n=1}^{\infty} a z^{n-1}$)</td>
<td>Converges to $\frac{a}{1-z}$ only if $</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diverges if $</td>
<td>z</td>
</tr>
<tr>
<td>p-series</td>
<td>$\sum_{n=1}^{\infty} \frac{1}{n^p}$</td>
<td>Converges if $p > 1$</td>
<td>Useful for comparison tests if the n^{th} term a_n of a series is similar to $\frac{1}{n^p}$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diverges if $p \leq 1$</td>
<td></td>
</tr>
<tr>
<td>Integral</td>
<td>$\sum_{n=1}^{\infty} a_n$ $(c \geq 0)$</td>
<td>$\sum_{n=1}^{\infty} a_n = f(n)$ for all n</td>
<td>The function f obtained from $a_n = f(n)$ must be continuous, positive, decreasing and readily integrable for $x \geq c$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Converges if $\int_{c}^{\infty} f(x) , dx$ converges</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diverges if $\int_{c}^{\infty} f(x) , dx$ diverges</td>
<td></td>
</tr>
<tr>
<td>Comparison</td>
<td>$\sum a_n$ and $\sum b_n$ with $0 \leq a_n \leq b_n$ for all n</td>
<td>$\sum b_n$ converges \Rightarrow $\sum a_n$ converges</td>
<td>The comparison series $\sum b_n$ is often a geometric series or a p-series.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\sum a_n$ diverges \Rightarrow $\sum b_n$ diverges</td>
<td></td>
</tr>
<tr>
<td>Limit Comparison*</td>
<td>$\sum a_n$ and $\sum b_n$ with $a_n, b_n > 0$ for all n and $\lim_{n\to\infty} \frac{a_n}{b_n} = L > 0$</td>
<td>$\sum b_n$ converges \Rightarrow $\sum a_n$ converges</td>
<td>The comparison series $\sum b_n$ is often a geometric series or a p-series. To find b_n consider only the terms of a_n that have the greatest effect on the magnitude.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\sum b_n$ diverges \Rightarrow $\sum a_n$ diverges</td>
<td></td>
</tr>
<tr>
<td>Ratio</td>
<td>$\sum a_n$ with $\lim_{n\to\infty} \frac{</td>
<td>a_{n+1}</td>
<td>}{</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diverges if $L > 1$ or if L is infinite</td>
<td></td>
</tr>
<tr>
<td>Root*</td>
<td>$\sum a_n$ with $\lim_{n\to\infty} \sqrt[n]{</td>
<td>a_n</td>
<td>} = L$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diverges if $L > 1$ or if L is infinite</td>
<td></td>
</tr>
<tr>
<td>Absolute Value</td>
<td>$\sum</td>
<td>a_n</td>
<td>$</td>
</tr>
<tr>
<td>Alternating series</td>
<td>$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ $(a_n > 0)$</td>
<td>Converges if $0 < a_{n+1} < a_n$ for all n and $\lim_{n\to\infty} a_n = 0$</td>
<td>Applicable only to series with alternating terms.</td>
</tr>
</tbody>
</table>
Sequence and Series Summary
Formulas

1. If a sequence \(\{a_n\} \) has a limit \(L \), that is, \(\lim_{n \to \infty} a_n = L \), then the sequence is said to converge to \(L \). If there is no limit, the series diverges. If the sequence \(\{a_n\} \) converges, then its limit is unique. Keep in mind that
\[
\lim_{n \to \infty} \frac{\ln n}{n} = 0; \quad \lim_{n \to \infty} \frac{1}{\sqrt[n]{n}} = 1; \quad \lim_{n \to \infty} \frac{n^r}{n!} = 0. \quad \text{These limits are useful and arise frequently.}
\]

2. The harmonic series \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges; the geometric series \(\sum_{n=0}^{\infty} ar^n \) converges to \(\frac{a}{1-r} \) if \(|r| < 1 \) and diverges if \(|r| \geq 1 \) and \(a \neq 0 \).

3. The p-series \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) converges if \(p > 1 \) and diverges if \(p \leq 1 \).

4. **Limit Comparison Test**: Let \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) be a series of nonnegative terms, with \(a_n \neq 0 \) for all sufficiently large \(n \), and suppose that \(\lim_{n \to \infty} \frac{b_n}{a_n} = c > 0 \). Then the two series either both converge or both diverge.

5. **Alternating Series**: Let \(\sum_{n=1}^{\infty} a_n \) be a series such that
i) the series is alternating
ii) \(|a_{n+1}| \leq |a_n| \) for all \(n \), and
iii) \(\lim_{n \to \infty} a_n = 0 \)

Then the series converges.

6. A series \(\sum a_n \) is absolutely convergent if the series \(\sum |a_n| \) converges. If \(\sum a_n \) converges, but \(\sum |a_n| \) does not converge, then the series is conditionally convergent. Keep in mind that if \(\sum |a_n| \) converges, then \(\sum a_n \) converges.
7. **Comparison Test**: If \(0 \leq a_n \leq b_n \) for all sufficiently large \(n \), and \(\sum_{n=1}^{\infty} b_n \) converges,

then \(\sum_{n=1}^{\infty} a_n \) converges. If \(\sum_{n=1}^{\infty} a_n \) diverges, then \(\sum_{n=1}^{\infty} b_n \) diverges.

8. **Integral Test**: If \(f(x) \) is a positive, continuous, and decreasing function on \([1, \infty)\) and let

\[a_n = f(n) \]. Then the series \(\sum_{n=1}^{\infty} a_n \) will converge if the improper integral \(\int_1^{\infty} f(x) \, dx \)

converges. If the improper integral \(\int_1^{\infty} f(x) \, dx \) diverges, then the infinite series \(\sum_{n=1}^{\infty} a_n \)

diverges.

9. **Ratio Test**: Let \(\sum_{n=1}^{\infty} a_n \) be a series with nonzero terms.

i) If \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \), then the series converges absolutely.

ii) If \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \), then the series is divergent.

iii) If \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1 \), then the test is inconclusive (and another test

must be used).

10. **Power Series**: A power series is a series of the form

\[\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \ldots + c_n x^n + \ldots \] or

\[\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \ldots + c_n (x-a)^n + \ldots \] in which the

center \(a \) and the coefficients \(c_0, c_1, c_2, \ldots, c_n, \ldots \) are constants. The set of all numbers \(x \)

for which the power series converges is called the interval of convergence.

11. **Taylor Series**: Let \(f \) be a function with derivatives of all orders throughout some interval

containing \(a \) as an interior point. Then the Taylor series generated by \(f \) at \(a \) is

\[\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \ldots \]

The remaining terms after the term containing the \(n \)th derivative can be expressed as a

remainder to Taylor's Theorem:

\[f(x) = f(a) + \sum_{n=1}^{\infty} \frac{f^{(n)}(a)(x-a)^n}{n!} + R_n(x) \text{ where } R_n(x) = \frac{1}{n!} \int_0^x (x-t)^n f^{(n+1)}(t) \, dt \]

Lagrange's form of the remainder: \(R_n(x) = \frac{f^{(n+1)}(c)(x-a)^{n+1}}{(n+1)!} \), where \(a < c < x \). The

series will converge for all values of \(x \) for which the remainder goes to zero.
12. **Frequently Used Series**

\[
\frac{1}{1-x} = 1 + x + x^2 + \ldots + x^n + \ldots = \sum_{n=0}^{\infty} x^n, \quad |x| < 1
\]

\[
\frac{1}{1+x} = 1 - x + x^2 - \ldots + (-x)^n + \ldots = \sum_{n=0}^{\infty} (-1)^n x^n, \quad |x| < 1
\]

\[e^x = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad |x| < \infty
\]

\[
\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \ldots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad |x| < \infty
\]

\[
\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + \ldots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad |x| < \infty
\]

\[
\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots + (-1)^{n-1} \frac{x^n}{n} + \ldots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, \quad -1 < x \leq 1
\]

\[
	ext{Arc tan } x = x - \frac{x^3}{3} + \frac{x^5}{5} - \ldots + (-1)^n \frac{x^{2n+1}}{2n+1} + \ldots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \quad |x| \leq 1
\]
Indeterminate Form:

\[
\frac{0}{0}, \frac{\infty}{\infty} \implies \text{Apply L’Hopital Directly}
\]

\[
0 \cdot \infty \implies \text{Rewrite as either } \frac{0}{0} \text{ or } \frac{\infty}{\infty}
\]
Then apply L’Hopital

\[1^\infty, 0^0, \infty^0 \implies 1. \text{ Consider the limit of the } \ln \text{ of the function.}
2. \text{ Use laws of logs to rewrite in the form } 0 \cdot \infty.
3. \text{ Rewrite as either } \frac{0}{0} \text{ or } \frac{\infty}{\infty}.
4. \text{ Apply L’Hopital.}
5. \text{ Exponentiate your answer.}
\]

\[\infty - \infty \implies \text{Try to rewrite so that you can use one of the previous forms.}\]

To convert polar coordinates into rectangular coordinates, we use the basic relations
\[x = r \cos \theta, \quad y = r \sin \theta\]

Converting in the opposite direction we use
\[r^2 = x^2 + y^2, \quad \tan \theta = \frac{y}{x} \text{ if } x \neq 0\]
What does the graph look like?

\[r = a \quad \Rightarrow \quad \text{Circle} \]

\[r = 0 \quad \Rightarrow \quad \text{Line} \]

\[r = a + b \sin \theta \quad \text{OR} \quad r = a + b \cos \theta \]

\[a > b \quad \Rightarrow \quad \text{Dimpled Limacon} \]

\[a < b \quad \Rightarrow \quad \text{Limacon with an inner loop} \]

\[a = b \quad \Rightarrow \quad \text{Cardiod} \]

\[r = a \cos n\theta \quad \text{OR} \quad r = a \sin n\theta \]

\[n \text{ even } (n \geq 2) \quad \Rightarrow \quad \text{Rose with } 2n \text{ petals.} \]

\[n \text{ odd } (n \geq 3) \quad \Rightarrow \quad \text{Rose with } n \text{ petals.} \]