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1 Introduction

Informally, the phenomenon of measure concentration is that in a given “high-dimensional” prob-
ability space, any “well-behaved” function is “almost” constant. We will study how to make
this statement quantitative and precise and what consequences can be derived from this measure
concentration. To get a taste of this subject, we start with a simple example, concentration on
high-dimensional spheres.

1.1 Measure concentration on high-dimensional spheres

Consider the unit sphere Sn−1 = {x ∈ Rn : ‖x‖ = 1}, containing each vector x ∈ Rn with
Euclidean norm ‖x‖ = (

∑n
i=1 x

2
i )

1/2 = 1. We also define the canonical inner product between
two vectors x, y ∈ Rn by 〈x, y〉 =

∑n
i=1 xiyi. Define the metric distance between x, y ∈ Sn−1 by

d(x, y) = arccos〈x, y〉 ∈ [0, π] .

1.1.1 Question. Why is the function d : Sn−1 × Sn−1 → R+ a metric?

Symmetry and positive definiteness are elementary. The distance d(x, y) is the length of the
shortest geodesic (great arc) between x and y. A direct proof of the triangle inequality can be
found in M. Berger, Geometry II, Springer, N.Y., 1996. Otherwise, we can appeal to the fact
that the shortest geodesic between two points minimizes length among all piecewise differentiable
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paths, and thus if the path had to pass through another point in between, then the length can
only increase.

We also define the rotation-invariant probability measure µ on Sn−1. This is induced on the
sphere by the (left) Haar measure on the Lie group of all orientation-preserving rotations. For a
given continuous function f : Sn−1 → R, we define the median mf with respect to µ by the two
properties

µ({x ∈ Sn−1 : f(x) ≥ mf} ≥
1

2

and

µ({x ∈ Sn−1 : f(x) ≤ mf} ≥
1

2
.

1.1.2 Question. Why is this median well defined?

For each α ∈ R, define Lα = {x ∈ Sn−1 : f(x) < α} and Uα = {x ∈ Sn−1 : f(x) ≥ α},
then g(α) = µ(Lα) and h(α) = µ(Uα) are by definition monotonic in α and g + h = 1. Let
the median mf be given by mf = inf{α : g(α) ≥ 1/2}, then it satisfies the second of the two
claimed inequalities by the regularity of µ. Moreover, we also have mf = sup{α : h(α) ≥ 1/2},
otherwise we would get a contradiction to g+h = 1. Using the regularity of µ, the first inequality
follows.

1.1.3 Definition. A function f : Sn−1 → R is M -Lipshitz if

|f(x)− f(y) ≤Md(x, y)

for all x, y ∈ Sn−1.

We can now state a first result in the context concentration of measure.

1.1.4 Proposition. Let Sn−1 be the unit sphere in Rn and µ the rotation-invariant probability
measure on Sn−1. If f : Sn−1 → R is 1-Lipshitz and mf is its median with respect to µ, then for
ε ≥ 0,

µ({x ∈ Sn−1 : |f(x)−mf | ≤ ε}) ≥ 1−
√
π

2
e−ε

2(n−2)/2 .

Proof. Later.

Note, the inequality gives no infor for “small” ε when n is held fixed. However, if we choose
a sequence {εn}n∈N and let εn → 0 such that ε2nn → ∞, then the measure µ({x ∈ Sn−1 :
|f(x)−mf | ≤ ε})→ 1.

We will consider an example for a function f which is natural for the metric.

1.1.5 Question. Why is the function the function f(x) = 〈x, a〉, for a ∈ Sn−1, 1-Lipshitz?

We have

|f(x)− f(y)| = |〈x− y, a〉| ≤ ‖x− y‖‖a‖ = ‖x− y‖ ≤ d(x, y) ,

because ‖x − y‖ is the chordal distance, the length of the geodesic in Rn between x and y,
whereas d(x, y) measures the length of the shortest geodesic in the subset Sn−1 ⊂ Rn.
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1.1.6 Exercise. Derive a concentration inequality of the form stated in 1.1.4 in the special case
f(x) = 〈x, a〉 for any a ∈ Sn−1.

Without loss of generality, we can choose a = (1, 0, 0, . . . , 0) after a suitable rotation of the
sphere. The median of f is then identified as mf = 0, because the “northern” hemisphere

{x ∈ Sn−1 : 〈x, a〉 ≥ 0} = {x ∈ Sn−1 : x1 ≥ 0}

has measure 1/2 and so does its reflection about the origin.
Consider the image measure ρn on [−1, 1] induced by projection µ with f . It is absolutely

continuous with respect to the Lebesgue measure and has a Radon-Nikodym derivative

dρn(t) = An(1− t2)(n−3)/2dt ,

with the normalization constant An = Γ(n/2)√
πΓ((n−1)/2)

. We compute

µ({x ∈ Sn−1 : |〈x, a〉| ≤ ε}) = ρn([−ε, ε])

use normalization and symmetry

ρn([−ε, ε]) =

∫ ε

−ε
An(1− t2)(n−3)/2dt = 1− 2

∫ 1

ε

An(1− t2)(n−3)/2dt .

The integrand is estimated on the interval [ε, 1] by

1− t2 ≤ e−t
2 ≤ e−(n−3)ε2/2e−(n−3)(t−ε)

where the exponent has been linearized about t = ε. Further, extending the domain to [ε,∞) (if
n > 3) and performing the integration gives

ρn([−ε, ε]) ≥ 1− 2An
n− 3

e−(n−3)ε2/2 .

This bound is of the same exponential type as in 1.1.4. Now the constant 2An/(n − 3) can be
estimated with the help of Stirling’s approximation,

2An
n− 3

≈
√

2e

nπ

which vanishes as n → ∞. Thus, this estimate is asymptotically slightly better than the result
for the general case in 1.1.4.

We summarize this exercise informally by saying that the surface measure of the unit sphere
in Rn is concentrated near the equator.

As we can see from the exercise, integration on the sphere can become quite involved. For-
tunately, we can derive many concentration results with a detour through Gaussian measures in
Rn.

We will see that the Gaussian measure is in high dimensions close to the surface measure of
an appropriately scaled sphere.
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2 Wrapping the sphere in a Gaussian measure

The standard Gaussian measure γ1 on R1 has the density 1√
2π
e−t

2/2 . It can be verified that this
is a probability measure, and so is the standard Gaussian measure γn on Rn with density

1

(2π)n/2
e−‖x‖/2 ,

so for a measurable set A ⊂ Rn,

γn(A) =

∫
A

1

(2π)n/2
e−‖x‖/2dx .

We will find that the function x 7→ ‖x‖ is almost constant with respect to the Gaussian
measure, with value ‖x‖ ≈

√
n. This means, with respect to the standard Gaussian measure,

most vectors are close to the sphere of radius
√
n.
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