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Denote by Gk(Rn) the Grassmannian, which is the collection of k-dimensional subspaces of

Rn
. Define a distance on Gk(Rn) by the operator norm of the difference between corresponding

orthogonal projections. That is, P1 : Rn → V1, P2 : Rn → V2, with V1, V2 k-dimensional,

then d(V1, V2) = ||P1 − P2||. This distance is invariant under the orthogonal group. So,

||P1 − P2|| = ||OP1O
∗ − OP2O

∗|| = ||O(P1 − P2)O∗||, O ∈ O(n), the set of unitary operators

on Rn
.

Also, O(n) acts transitively on projections, for all rank-k P1, P2, ∃O ∈ O(n) s.t. P2 = OP1O
∗

⇒ ∃! Borel probability measure on Gk(Rn), invariant under O(n), we denote this measure by

µn,k.

This measure can be obtained from the left-invariant Haar measure νn on O(n) by the map

Ψ : O → OPV1O
∗

PV1 an orthogonal projection onto some fixed k-dimensional subspace.

In terms of subspaces, we have

µn,k(V ) = νn({U ∈ O(n) : U(V1) ∈ V }), V ∈ Gk(Rn)

2.3.1 Question. Why is this identity true?

This is because the image measure is invariant under the action of O(n), by the commutative

diagram below.

O(n)
O �→O�O [1]

−−−−−−→ O(n)
�Ψ

�Ψ

Gk(Rn)
V �→O�V [1]

−−−−−−→ Gk(Rn)

(1)

[1] This is left multiplication by O�
, for some fixed O� ∈ O(n)

The “effective map” between Gk(Rn) is invariant underO(n) because O�PV (O�)∗ = O�OPV1O
∗(O�)∗

and this projection has range O�(O(V1)) = (O�O)(V1)

2.3.2 Lemma. Let x ∈ Rn, x �= 0, let µn,k be the O(n)-invariant measure on Gk(Rn), and for
each V ∈ Gk(Rn), let PV denote orthogonal projection onto V . Then, for 0 < � < 1,
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µn,k({V ∈ Gk(Rn);

�
n

k
||PV (x)|| ≥

1

1− �
||x||}) ≤ exp (−�

2
k/4) + exp (−�

2
n/4)

and

µn,k({V ∈ Gk(Rn);

�
n

k
||PV (x)|| ≤ (1− �)||x||}) ≤ exp (−�

2
k/4) + exp (−�

2
n/4)

Proof. Without loss of generality, choose ||x|| = 1. Choose any k-dimensional subspace, V1, and

if U ∈ O(n), let V = U(V1), PV the orthogonal projection onto V1, and use the fact that the

measure νn on O(n) induces the Grassmanian measure µn,k.

This implies,

µn,k({V ∈ Gk(Rn);

�
n

k
||PV (x)|| ≥

1

1− �
}) = νn({U ∈ O(n);

�
n

k
||PU(V1)(x)|| ≥

1

1− �
})

and

µn,k({V ∈ Gk(Rn);

�
n

k
||PV (x)|| ≤ (1− �)}) = νn({U ∈ O(n);

�
n

k
||PU(V1)(x)|| ≤ (1− �)})

The projected length of x is

||PU(V1)(x)|| = ||U
∗
PU(V1)UU

∗
x|| = ||PV1U

∗
x||

and the image measure induced by νn under Φx : O(n) → Sn−1, U �→ U∗x is the surface

measure on sphere, µn.

Thus,

νn({U ∈ O(n);

�
n

k
||PU(V1)(x)|| ≥

1

1− �
}) = µn({y ∈ S

n−1;

�
n

k
||PV1(y)|| ≥

1

1− �
})

and

νn({U ∈ O(n);

�
n

k
||PU(V1)(x)|| ≤ (1− �)}) = µn({y ∈ S

n−1;

�
n

k
||PV1(y)|| ≤ (1− �)})

now applying the corollary in section 2.3 (gaussian v.s. surface measure), finishes the proof.

Summary: Norm reduction for vectors on Sn−1
under a fixed projection is “mostly” by factor�

k

n
(1± �), same is true for fixed vector under projections onto “many subspaces”, in Gk(Rn).

Question: what about more than one vector?
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2.3.3 Theorem. (Johnson-Lindenstrauss, Part II)
Let a1, ..., aN be points in Rn, given � > 0, choose k ∈ N s.t.

N(N − 1)(exp(−k�
2
/4) + exp(−n�

2
/4)) ≤

1

3

and let Gk(Rn) be the set of k-dimensional subspaces, then

µn,k({V ∈ Gk(Rn); (1−�)||ai−aj|| ≤

�
n

k
||PV (ai−aj)|| ≤

1

1− �
||ai−aj|| ∀ 1 ≤ i ≤ j ≤ N}) ≥

2

3

Proof. Let cij = ai − aj, i > j, we count
�

N

2

�
= N(N − 1)/2 such differences, and ||PV cij|| =

||PV ai − PV aj||.

The set of subspaces V for which
�

n

k
||PV cij|| ≥

1
1−�

||cij|| or
�

n

k
||PV cij|| ≤ (1− �)||cij|| for

at least one pair {i, j}, i �= j, is the union of all the subspaces for which one specific cij either

contracts too much or too little under the projection PV . There are N(N − 1)/2 such pairs, and

for each pair there are two possibilities for the norm bound. This means, we have a set which is

the union of N(N − 1) subsets, each subset with measure at most exp(−k�2/4)+exp(−n�2/4).
Now by our assumption and the union bound over choices i, j ∈ {1, 2, ..., N}, i �= j the union of

these sets has measure at most
1
3 . Now taking the complement gives the desired estimate of the

measure.

2.3.4 Question. What about infinitely many vectors, i.e. span{a1, ..., aT}, for some T ∈ N ? See

“restricted isometry property”.

Need to choose set of points Q ⊂ {x ∈ span{a1, ..., aT}; ||x|| = 1}, “sufficiently dense”,

apply Johnson-Lindenstrauss to Q, combine this with triangle inequality to get estimate for all

points.

3


