3 Measure Concentration in boolean cubes

3.1.1 Definition. The boolean cube is the set $I_n = \{0, 1\}^n$ endowed with distance $d(x, y)$
between $x = (x_1, \cdots, x_n)$ and $y = (y_1, \cdots, y_n)$ given by

$$d(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

A natural probability measure on I_n is the counting probability measure μ_n defined by

$$\mu_n(\{x\}) = \frac{1}{2^n} \text{ for any } x \in I_n$$

Notation: We will denote $\frac{1}{2^n} \sum_{x \in I_n} f(x)$ by $\int_{I_n} f d\mu_n$ for any function f on I_n.

We will see that “almost all” points are “close” to any sufficiently large subset $A \subset I_n$. This will help us show concentration of measure on the cube. Again, we use the Laplace Transform.

3.1.2 Theorem. Let $A \subset I_n$ be a non-empty, let $f : I_n \to \mathbb{Z}^+$, $f(x) = d(x, A)$ be the distance from A. For any $t \geq 0$, we then have

$$\int_{I_n} e^{tf} d\mu_n \leq \frac{1}{\mu_n(A)} \left(\frac{1}{2} + \frac{e^t + e^{-t}}{4} \right)^n$$

We delay the proof of this theorem and first derive a consequence.

3.1.3 Corollary. For $\epsilon > 0$,

$$\mu_n \left(\{x \in I_n : d(x, A) \geq \epsilon \sqrt{n} \} \right) \leq e^{-\epsilon^2/\mu_n(A)}.$$

Proof of Corollary. By Taylor expansion of both sides, we get

$$\frac{1}{2} + \frac{e^t + e^{-t}}{4} \leq e^{t/4}$$
Using Laplace Transform, we obtain

\[
\mu_n \left(\{ x \in I_n : d(x, A) \geq \epsilon \sqrt{n} \} \right) \leq e^{-\epsilon \sqrt{n}} \int_{I_n} e^{t d(x, A)} d\mu_n \\
\leq e^{-\epsilon \sqrt{n}} \frac{1}{\mu_n(A)} \left(\frac{1}{2} + \frac{e^t + e^{-t}}{4} \right)^n
\]

[By previous Theorem]

Now, using inequality from the Taylor expansion, we get

\[
\mu_n \left(\{ x \in I_n : d(x, A) \geq \epsilon \sqrt{n} \} \right) \leq e^{-\epsilon \sqrt{n}} \frac{1}{\mu_n(A)} e^{\epsilon^2 n/4}
\]

Now choosing \(t = 2\epsilon / \sqrt{n} \), we get

\[
\mu_n \left(\{ x \in I_n : d(x, A) \geq \epsilon \sqrt{n} \} \right) \leq e^{-\epsilon^2} \frac{1}{\mu_n(A)} e^{\epsilon^2} \leq \frac{e^{-\epsilon^2}}{\mu_n(A)}
\]

\[\Box\]

Proof of Theorem. We abbreviate

\[
\left(\frac{1}{2} + \frac{e^t + e^{-t}}{4} \right) = c(t).
\]

We use induction over \(n \) to prove this theorem. For \(n = 1 \), we have either \(|A| = 1 \) or \(|A| = 2 \). When \(|A| = 1 \), we have \(\mu_1(A) = 1/2 \) and

\[
\int_{I_1} e^{t f} df \mu_1 = \frac{1}{2} + \frac{e^t}{2} \leq 2c(t) \quad \text{[since } \mu_1(A) = 1/2]\]

When \(|A| = 2 \), we have

\[
\int_{I_1} e^{t f} df \mu_1 = \frac{1}{2} + \frac{1}{2} = 1 \leq c(t) \quad \text{[since } c(t) \geq 1]\]

Now, assume that the result is true on \(I_{n-1} \). Consider

\[I_n^1 = \{ x \in I_n : x_n = 1 \} \text{ and } I_n^0 = \{ x \in I_n : x_n = 0 \}. \]

Also, we let

\[A_0 = \{ x \in I_n^0 : x \in A \} \text{ and } A_1 = \{ x \in I_n^1 : x \in A \}. \]
Define μ_{n-1} on I_n^1 and I_n^0. Then, by definition, we have

$$\mu_n(A) = \frac{\mu_{n-1}(A_1) + \mu_{n-1}(A_0)}{2}.$$

Now, we pick $x \in I_n$ and let $x' = (x_1, \cdots, x_{n-1}) \in I_{n-1}$. Since $x \in I_n^1$ or $x \in I_n^0$, we have

$$d(x, A) = \min\{d(x', A_1), d(x', A_0) + 1\} \text{ if } x \in I_n^1$$

or

$$d(x, A) = \min\{d(x', A_0), d(x', A_1) + 1\} \text{ if } x \in I_n^0,$$

because a closest point is in $A_1 \subset I_n^1$ or in $A_0 \subset I_n^0$.

Define $f_0(x) = d(x, A_0)$ and $f_1(x) = d(x, A_1)$.

Now, we have

$$\int_{I_n} e^{tf} d\mu_n = \int_{I_n^1} e^{tf} d\mu_n + \int_{I_n^0} e^{tf} d\mu_n$$

$$= \int_{I_n^1} e^{t\min\{d(x', A_1), d(x', A_0) + 1\}} d\mu_n(x') + \int_{I_n^0} e^{t\min\{d(x', A_0), d(x', A_1) + 1\}} d\mu_n(x')$$

$$= \int_{I_n^1} \min\{e^{td(x', A_1)}, e^{t}(d(x', A_0))\} d\mu_n(x') + \int_{I_n^0} \min\{e^{td(x', A_0)}, e^{t}(d(x', A_1))\} d\mu_n(x')$$

$$\leq \min\left\{\int_{I_n^1} e^{td(x', A_1)} d\mu_n(x'), \int_{I_n^1} e^{t}(d(x', A_0)) d\mu_n(x')\right\}$$

$$+ \min\left\{\int_{I_n^0} e^{td(x', A_0)} d\mu_n(x'), \int_{I_n^0} e^{t}(d(x', A_1)) d\mu_n(x')\right\}$$

$$= \min\left\{\frac{1}{2} \int_{I_n^1} e^{td(x', A_1)} d\mu_{n-1}(x'), \frac{1}{2} \int_{I_n^1} e^{t}(d(x', A_0)) d\mu_{n-1}(x')\right\}$$

$$+ \min\left\{\frac{1}{2} \int_{I_n^0} e^{td(x', A_0)} d\mu_{n-1}(x'), \frac{1}{2} \int_{I_n^0} e^{t}(d(x', A_1)) d\mu_{n-1}(x')\right\}$$

[Using induction assumption, we have]

$$\leq \frac{1}{2} \min\left\{\frac{e^{n-1}(t)}{\mu_{n-1}(A_1)}, e^{t}\frac{e^{n-1}(t)}{\mu_{n-1}(A_0)}\right\} + \frac{1}{2} \min\left\{\frac{e^{n-1}(t)}{\mu_{n-1}(A_0)}, e^{t}\frac{e^{n-1}(t)}{\mu_{n-1}(A_1)}\right\}$$

$$= \frac{1}{2} \frac{e^{n-1}(t)}{\mu_n(A)} \min\left\{\frac{\mu_n(A)}{\mu_{n-1}(A_1)}, e^{t}\frac{\mu_n(A)}{\mu_{n-1}(A_0)}\right\} + \min\left\{\frac{\mu_n(A)}{\mu_{n-1}(A_0)}, e^{t}\frac{\mu_n(A)}{\mu_{n-1}(A_1)}\right\}$$

\((*)\)

We abbreviate

$$a_0 = \frac{\mu_{n-1}(A_0)}{\mu_n(A)} \text{ and } a_1 = \frac{\mu_{n-1}(A_1)}{\mu_n(A)}.$$

So, we have $a_0 + a_1 = 2$. The R. H. S. of the inequality \((*)\) is maximal if we choose a_0, a_1 to minimize the expression $\min\{a_1^{-1}, e^ta_0^{-1}\} + \min\{a_0^{-1}, e^ta_1^{-1}\}$.
WLOG, we may assume $a_0 \geq a_1$. Now, at the end points, we have

1. $a_0 = 2, a_1 = 0$ and therefore
 \[
 \text{R. H. S.} \leq \frac{1}{2} \frac{c^{n-1}(t)}{\mu_n(A)} \left(\frac{e^t}{2} + \frac{1}{2} \right) = \frac{c^{n-1}(t)}{\mu_n(A)} \left(\frac{1}{4} + \frac{e^t}{4} \right).
 \]
2. $a_0 = 1 = a_1$ and then
 \[
 \text{R. H. S.} \leq \frac{1}{2} \frac{c^{n-1}(t)}{\mu_n(A)} \left(\min\{1, e^t\} + \min\{1, e^t\} \right) = \frac{c^{n-1}(t)}{\mu_n(A)} \leq \frac{c^n(t)}{\mu_n(A)}.
 \]

Now, when $a_0 > a_1$, $a_0^{-1} < a_1^{-1} < e^t a_1^{-1}$. So, the minimum is relevant in the first term only. The following is the sketch of the graph of a_1^{-1} [in red] and $e^t(2 - a_1)^{-1}$ [in blue, for $t = 1$] for $a_1 \in [0, 1]$.

One is increasing and the other is decreasing. Therefore, $\min\{a_1^{-1}, e^t a_0^{-1}\}$ is maximized when $a_1^{-1} = e^t(2 - a_1^{-1}) \Rightarrow \frac{2}{a_1} - 1 = e^t \Rightarrow a_1 = \frac{2}{1 + e^t}$ and $a_0 = \frac{2e^t}{1 + e^t}$. Inserting these gives us the maximum of $\min\{a_1^{-1}, e^t a_0^{-1}\} + \min\{a_0^{-1}, e^t a_1^{-1}\}$

\[
= \frac{1 + e^t}{2} + \frac{1 + e^t}{2e^t} = 1 + \frac{1}{2} (e^t + e^{-t}) = 2c(t).
\]

Therefore, from $(*)$, we get

\[
\int_{I_n} e^{tf} d\mu_n \leq \frac{1}{\mu_n(A)} \left(\frac{1}{2} + \frac{e^t + e^{-t}}{4} \right)^n.
\]

\[\square\]