We apply the martingale method to the boolean cube.

4.1.1 Theorem. Let \(f : I_n \rightarrow \mathbb{R} \) be 1-Lipshitz, \(a_f = \int_{I_n} f \, d\mu_n \). Then for all \(t \geq 0 \),

\[
\mu_n(\{x \in I_n : f(x) \geq a_f + t\}) \leq e^{-\frac{2t^2}{n}}
\]

and

\[
\mu_n(\{x \in I_n : f(x) \leq a_f - t\}) \leq e^{-\frac{2t^2}{n}}
\]

Proof. Take \(\mathcal{F}_0 = \{\emptyset, I_n\}, \mathcal{F}_n \) be the maximal \(\sigma \)-algebra and \(\mathcal{F}_1 = \{\emptyset, I_1, I_0, I_n\} \) and proceed by subdividing \(I_n \). A function \(f \) is measurable with respect to \(\mathcal{F}_k \) if it depends on the last \(k \) coordinates only.

Estimate \(|f_n - f_{n-1}| \):

We see that,

\[
f_{n-1}(x'_1, x_2, \ldots, x_n) = \frac{1}{2} (f_n(0, x_2, \ldots, x_n) + f_n(1, x_2, \ldots, x_n))
\]

By Lipshitz continuity \(|f_n(0, x_2, \ldots, x_n) - f_n(1, x_2, \ldots, x_n)| \leq 1 \). So we have,

\[
|f_{n-1}(x) - f_n(x)| \leq \frac{1}{2} = d_n
\]

Proceeding iteratively, we get

\[
\|f_i - f_{i-1}\|_\infty \leq \frac{1}{2} = d_i
\]

Now the theorem gives desired estimate. Rescaling \(t = \epsilon \sqrt{n} \) gives,

\[
\mu_n(\{x \in I_n : |f(x) - a_f| \geq \epsilon \sqrt{n}\}) \leq 2e^{-2\epsilon^2}
\]
5 Concentration in Product Spaces

5.1 The martingale method on product spaces

Let \(X = X_1 \times X_2 \ldots X_n \) and each \(X_i \) be equipped with a probability measure \(\mu_i \). Then \(X \) can be equipped with a product measure with measurable sets in a \(\sigma \)-algebra generated by, \(A = A_1 \times A_2 \ldots A_n \), where each \(A_i \) is measurable in \(X_i \) and \(\mu(A) = \prod_{i=1}^{n} \mu_i(A_i) \). Also let
\[d(x, y) = |\{ i : x_i \neq y_i \}| \]
 denote the Hemming distance between \(x = (x_1, x_2, \ldots, x_n) \) and \(y = (y_1, y_2, \ldots, y_n) \).

5.1.1 Theorem. Let \(f : X \to \mathbb{R} \) be integrable and \(d_1, d_2, \ldots, d_n \) be such that \(|f(x) - f(y)| \leq d_i \) if \(x \) and \(y \) have \(x_j = y_j \) for all \(j \) except \(j = i \). Let \(a = \int_X f d\mu_i \), \(D = \sum_{j=1}^{n} d_j^2 \). Then for \(t \geq 0 \),
\[
\mu(\{ x : f(x) \geq a + t \}) \leq e^{\frac{-t^2}{2D}} \\
\mu(\{ x : f(x) \leq a - t \}) \leq e^{\frac{-t^2}{2D}}.
\]

Proof. Uses Martingale method. Let \(f_0 : X \to \{ a \} \), \(f_n = f \) and,
\[
f_i(x_1, x_2, \ldots, x_i, x_{i+1}', x_{i+2}', \ldots x_n') = \int_{X_{i+1} \times \ldots \times X_n} f(x_1, x_2, \ldots x_n) d\mu_{i+1} \ldots d\mu_n.
\]
This means for \(f_i \) we have averaged over \(n - i + 1 \) dimensions. This is a conditional expectation with respect to \(F_i \) generated by \(A_1 \times A_2 \ldots A_i \times X_{i+1} \times \ldots X_n \) with \(A_j \subseteq X_j \) measurable.

If \(g(x) = f_i(x) - f_{i-1}(x) \) then, this difference comes from averaging over the \(i \)th coordinate and thus,
\[
|g_i(x)| = \left| f_i(x_1', x_2', \ldots, x_i', \ldots, x_n') - \int f_i(x_1', \ldots, x_{i-1}', x_i, x_{i+1}', \ldots x_n') d\mu_i(x_i) \right| \leq d_i
\]
for each \(1 \leq i \leq n \). Moreover,
\[
E[g_i|F_{i-1}] = E[f_i - f_{i-1}|F_{i-1}] \\
= E[f_i|F_{i-1}] - f_{i-1} \\
= f_{i-1} - f_{i-1} = 0
\]
So the Martingale method applies verbatim, as before. \(\square \)

5.2 Law of large Numbers

Suppose \(h : Y \to \mathbb{R} \) is integrable and \(a = E[h] = \int_Y h d\nu \). If we “sample” \(n \) copies of \(h \) independently and average then how far would
\[
f(y) = \frac{h(y_1) + \ldots + h(y_n)}{n}
\]
typically be from a?

Let $X_i = Y$ and $\mu_i = \nu$ and let $x = (x_1, x_2, \ldots, x_n)$, then consider

$$f(x) = \frac{h(x_1) + \ldots + h(x_n)}{n}$$

Assume $0 \leq h(x_1) \leq d$ for all $x_1 \in X_1$, then changing one coordinate of (x_1, x_2, \ldots, x_n) changes $f(x)$ by at most $\frac{d}{n}$. Thus we can apply the preceding theorem with,

$$D = \sum_{i=1}^{n} \left(\frac{d}{n} \right)^n = \frac{d^2}{n}$$

We conclude that,

$$\mu_n(\left \{ x : f(x) \geq a + t \right \}) \leq e^{-\frac{nt^2}{2d^2}}$$

and

$$\mu_n(\left \{ x : f(x) \leq a - t \right \}) \leq e^{-\frac{nt^2}{2d^2}}$$

Choosing $t = \frac{\epsilon d}{\sqrt{n}}$ gives,

$$\mu_n(\left \{ x : |f(x) - a| \geq \frac{\epsilon d}{\sqrt{n}} \right \}) \leq 2e^{\frac{\epsilon^2}{2}}$$

5.3 Vector Valued Functions

If we have h_1, h_2, \ldots, h_N instead of just one function h, with corresponding averages a_1, a_2, \ldots, a_N and we sample,

$$f_i(x) = \frac{h_i(x_1) + \ldots + h_i(x_n)}{n}$$

then which n should we choose to guarantee that each average f_i is close to a_i on a set of large measure?

Using union bound,

$$\mu_n(\left \{ x : |f_i(x) - a_i| \leq t \forall i \right \}) \geq 1 - 2Ne^{-\frac{nt^2}{2d^2}}$$

Choosing $t = \epsilon d$ gives $1 - 2Ne^{-\frac{n\epsilon^2}{2}}$ on RHS.