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We inspect the general result in the product space with our examples:
Examples: Fair and unfair coins: If X = {0,1}, u({0}) = 1/2 = p({1}), f(z) = = — 1/2 for

z € X, then
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—1/2 <t < 1/2. [By taking derivative w. r. t. A and equalizing to zero to solve for A]. Thus,
we have
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So, we obtain precisely what we had previously
fn ({z € X ¢ h(z) < nt}) < 273 1),
Now, we let 4({0}) =1 —p, u({1}) =1 and take f(z =z — p). Then,
Li(A) =In (pe*™ + (1 — p)e ™) = /eAfd,u

and tA — L;(A) is maximal at

To compute Legendre transform, maximize tA\—L (), maximum is assumed at A* = In
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Thus, we have
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So, we have

Ly(A) = (t+p)In (W) N (1;19)
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Using Varadhan's Lemma, we have, for h =2y +---+xz, —np,h : X,, — R that
i ({z € X, : h(z) < nt}) < e b0
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Setting t = %ﬁ,p = %2 we see that the R. H. S. of (%) becomes
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which approaches to <1 ) e®?| <1 asn — oo. So, this is a non-trivial asymp-

totic estimate.

General Insights: If X is a metric space witha probability measure p such that A(t) = {z : d(z, A) < t}
has measure p(A(t)) > 1 —e " for A with u(A) > 1, then any 1-Lipschitz function f : X — R
concentrates about its median.

To see this, we consider

A= o f(2) = myg)
and
A_=A{z: f(z) <my},
both of which has measure at least 1/2. Then, we have
PAL) > 1 — e p(A(t) > 1— e

and
(A () NA_(E) > 1 — 2.

This implies that
p{s:|f(@) —my| <t}) =1 —2e7 "

6 Measure Concentration on High Dimensional Spheres

6.1 Gaussians as Limits of Projected Spherical Measures

We recall that we induced normalized surface measure on S™~! by map = — ﬁ from ,,. Now,
we will induce measure in reverse direction.



6.1.1 Lemma. Non-normalized Riemannian surface measure of S™ ! is

9 n/2
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with -
I'(t) = / e dx, t> 0.
0

Proof. Consider p,(z) = ¢ 11 the standard Gaussian desity and let S"~'(r) = {z € R" : ||z|| = r}.
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Integration in polar co-ordinates gives us
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Substituting t = r2/2, rdr = dt,r" 2 = 2"=2/2¢("=2)/2 "\ve have
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Solving for |S™1(1)|, we obtain
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6.1.2 Theorem. Let S*~! C R™ be the sphere
S ={z eR": |lz| = v/n}

and [, be the rotation invariant probability measure on S"~'. Consider ® : S"~! — R be given
by ®(xy,- - ,x,) = 1 and let v, be the induced measure on R, i. e.,

Vn(A) = [in(®7(A)) for Borel sets A C R.

If 7, is the standard Gaussian measure with density pi(z) = \/%76*12/ 2 then for any Borel set

A CR, lim v,(A) =~,(A) and the density of v, converges uniformly on compact sets to p;.



