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We inspect the general result in the product space with our examples:

Examples: Fair and unfair coins: If X = {0, 1}, µ({0}) = 1/2 = µ({1}), f(x) = x − 1/2 for

x ∈ X, then

Lf (λ) = ln

�
1

2
e

λ/2 +
1

2
e
−λ/2

�

To compute Legendre transform, maximize tλ−Lf (λ), maximum is assumed at λ
∗ = ln

�
1 + 2t

1− 2t

�
,

−1/2 < t ≤ 1/2. [By taking derivative w. r. t. λ and equalizing to zero to solve for λ]. Thus,

we have

L
∗
f
(λ) = −

�
1

2
+ t

�
ln

�
1

1 + 2t

�
−

�
1

2
− t

�
ln

�
1

1− 2t

�
= H

�
1

2
− t

�
+ ln 2.

So, we obtain precisely what we had previously

µn ({x ∈ X : h(x) ≤ nt}) ≤ 2−n
e

nH( 1
2−t)

.

Now, we let µ({0}) = 1− p, µ({1}) = 1 and take f(x = x− p). Then,

Lf (λ) = ln
�
pe

λ(1−p) + (1− p)e−pλ
�

=

�
e

λf
dµ

and tλ− Lf (λ) is maximal at

λ
∗ = ln

�
(1− p)(t + p)

p(1− p− t)

�
, −p ≤ t < 1− p.

Thus, we have

L
∗
f
(λ) = ln

�
pe

(1−p) ln( (1−p)(t+p)
p(1−p−t) ) + (1− p)e−p ln( (1−p)(t+p)

p(1−p−t) )
�

= −p ln

�
(1− p)(t + p)

p(1− p− t)

�
+ ln

�
e
ln p+ln( (1−p)(t+p)

p(1−p−t) ) + e
ln(1−p)

�

= −p ln

�
(1− p)(t + p)

p(1− p− t)

�
+ ln

�
e
ln p+ln( (t+p)

p(1−p−t))
�

+ ln(1− p)

= −p ln

�
(1− p)(t + p)

p(1− p− t)

�
+ ln

�
(t + p)

(1− p− t)
+ 1

�
+ ln(1− p)

= −p ln

�
(1− p)(t + p)

p(1− p− t)

�
+ ln

�
1

(1− p− t)

�
+ ln(1− p).
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So, we have

L
∗
f
(λ) = (t + p) ln

�
(1− p)(t + p)

p(1− p− t)

�
− ln

�
1− p

1− p− t

�

= (t + p) ln

�
(t + p)

p

�
+ (t + p) ln

�
1− p

1− p− t

�
− ln

�
1− p

1− p− t

�

= (t + p) ln

�
(t + p)

p

�
+ (t + p− 1) ln

�
(1− p)

1− p− t

�

Using Varadhan’s Lemma, we have, for h = x1 + · · · + xn − np, h : Xn → R that

µn ({x ∈ Xn : h(x) ≤ nt}) ≤ e
−nL

∗
f (t)

=

��
p

t + p

�t+p �
1− p

1− p− t

�1−p−t
�n

(∗)

Setting t = αβ

n
, p = β

2

n
, we see that the R. H. S. of (∗) becomes

�
1−

αβ

n

αβ

n
+ β2

n

�αβ+β
2 �

1 +
αβ

n

1−αβ

n
− β2

n

�n �
1 +

αβ

n

1−αβ

n
− β2

n

�−αβ−β
2

which approaches to

��
1− αβ

αβ+β2

�αβ+β
2

e
αβ

�
< 1 as n → ∞. So, this is a non-trivial asymp-

totic estimate.

General Insights: If X is a metric space witha probability measure µ such that A(t) = {x : d(x, A) ≤ t}
has measure µ(A(t)) ≥ 1−e

−ct
2

for A with µ(A) ≥ 1
2 , then any 1-Lipschitz function f : X → R

concentrates about its median.

To see this, we consider

A+ = {x : f(x) ≥ mf}
and

A− = {x : f(x) ≤ mf},
both of which has measure at least 1/2. Then, we have

µ(A+(t)) ≥ 1− e
−ct

2
, µ(A−(t)) ≥ 1− e

−ct
2

and

µ(A+(t) ∩ A−(t)) ≥ 1− 2e−ct
2
.

This implies that

µ ({s : |f(x)−mf | ≤ t}) ≥ 1− 2e−ct
2
.

6 Measure Concentration on High Dimensional Spheres

6.1 Gaussians as Limits of Projected Spherical Measures

We recall that we induced normalized surface measure on S
n−1

by map x → x

�x� from γn. Now,

we will induce measure in reverse direction.
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6.1.1 Lemma. Non-normalized Riemannian surface measure of S
n−1 is

|Sn−1| =
2πn/2

Γ(n/2)

with

Γ(t) =

� ∞

0

x
t−1

e
−x

dx, t > 0.

Proof. Consider ρn(x) =
1

(2π)n/2
e
−�x�2

, the standard Gaussian desity and let S
n−1(r) = {x ∈ Rn : �x� = r}.

Integration in polar co-ordinates gives us

1 =

�

Rn

dρn =
1

(2π)n/2

� ∞

0

|Sn−1(r)|e−r
2
/2

dr

=
1

(2π)n/2
|Sn−1(1)|

� ∞

0

r
n−1

e
−r

2
/2

dr

Substituting t = r
2
/2, rdr = dt, r

n−2 = 2(n−2)/2
t
(n−2)/2

, we have

1 =
1

(2π)n/2
|Sn−1(1)|

� ∞

0

2(n−2)/2
t
(n−2)/2

e
−t

dt

=
1

(2π)n/2
|Sn−1(1)|2(n−2)/2Γ(n/2)

Solving for |Sn−1(1)|, we obtain

|Sn−1(1)| =
(2π)n/22(n−2)/2

Γ(n/2)
=

2πn/2

Γ(n/2)
.

6.1.2 Theorem. Let S̃
n−1 ⊂ Rn be the sphere

S̃
n−1 = {x ∈ Rn : �x� =

√
n}

and µ̃n be the rotation invariant probability measure on S̃
n−1. Consider Φ : S̃

n−1 → R be given
by Φ(x1, · · · , xn) = x1 and let νn be the induced measure on R, i. e.,

νn(A) = µ̃n(Φ−1(A)) for Borel sets A ⊂ R.

If γ1 is the standard Gaussian measure with density ρ1(x) = 1√
2π

e
−x

2
/2, then for any Borel set

A ⊂ R, lim
n→∞

νn(A) = γ1(A) and the density of νn converges uniformly on compact sets to ρ1.
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