
High-Dimensional Measures and Geometry

Lecture Notes from Feb 18, 2010
taken by ALI S. KAVRUK

6.2.1 Theorem. Let S̃n−1 = {x ∈ Rn : �x� =
√

n} and µ̃n be the rotation invariant Borel
probability measure on S̃n−1. Consider

Φ : S̃n−1 → R given by Φ(x1, ..., xn) = x1.

Let νn be the the probability measure on R induced by Φ. If γ1 is the standard Gaussian measure
on R then for any Borel set A
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and the density of νn converges uniformly on compact subsets to γ1.

Proof. It is enough to show the first part of the claim for an open interval A = (a, b). Assume

n is large. Note that Φ−1(A) = {x ∈ Rn : a < x1 < b}. So for a fixed a < x1 < b, Φ−1({x1})
is the n− 2 sphere of radius
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for all large enough n for some constant
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so consequently limn→∞ ηn = 0. Note that the integrand
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1/2

not only pointwise but also uniformly over the closed interval [a, b]. (Which can be deduced by

taking logarithm of both sides and using the inequality
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where C depends on a and b.) Cosequently we can use the dominated convergence theorem and

the result follows.

Similirlarly this results holds for projections onto higher dimensional subspaces.

6.2.2 Corollary. Let S̃n−1 = {x ∈ Rn : �x� =
√

n} and µ̃n be the rotation invariant Borel
probability measure on S̃n−1. Consider

Φ : S̃n−1 → Rk given by Φ(x1, ..., xn) = (x1, ..., xk, 0, ..., 0)

Let νn,k be the the probability measure on Rk induced by Φ. If γk is the standard Gaussian
measure on Rk then for any Borel set A ⊆ Rk

lim
n→∞

νn,k(A) = γk(A) =

�
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2/2dx

and the density of νn,k converges uniformly on compact subsets to density of γk.

Proof. We will use the Fourier Transform. Consider

Fn(c) =

�
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eic·xdνn,k(x) and G(c) =
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By definition

Fn(c) =

�

S̃n−1

eic·xdµ̃n(x).

Since µ̃n is rotation invariant, by a suitable rotation, we may assume that c = (�c�, 0, ..., 0). So

by using the previous theorem

Fn(c) =

�

R
eic·xdνn(x1) .

because only the projection of x on the first coordinate enters in c·x. This is the Fourier transform

of the density for νn, which we already know converges uniformly on compact sets in R.

We conclude that νn,k has a radial density ρn,k with ρn,k(x) = ρn(�x�) and thus ρn,k converges

uniformly on compacts because any compact set is contained in a ball centered at the origin.

We are now ready for the main result.
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6.2.3 Definition. A spherical cap centered at a ∈ Sn−1 with radius r is

Ba(r) = {x ∈ Sn−1 : d(x, a) = arccos�x, a� < r}.

We will use the following theorem of Levy without proof and focus on consequences.

6.2.4 Theorem (Levy). If A ⊆ Sn−1, t > 0, and B = Ba(r) with µ(B) = µ(A) then

µ({x ∈ Sn−1 : d(x, A) ≤ t}) ≥ µ({x ∈ Sn−1 : d(x, B) ≤ t}) = µ(Ba(r + t))

If B is spherical cap in Sn−1
with µ(B) = 1/2 then B = Ba(π/2) for some a in Sn−1

. Also,

up to a set of measure 0, we have that

Ba(π/2 + t) = Sn−1 −B−a(π/2− t)

and

µ(Ba(π/2 + t)) = 1− µ(B−a(π/2− t)) = 1− µ(Ba(π/2− t)).

So we want an upper bound for µ(B−a(π/2− t)) to find a lower bound for µ(B−a(π/2 + t)).
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