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6.2.1 Theorem. Let S'f_l ={z € R": |jz|| = v/n} and [i,, be the rotation invariant Borel
probability measure on S™~'. Consider

®: S ! — R given by ®(z1, ..., z,) = 1.

Let v, be the the probability measure on R induced by ®. If v, is the standard Gaussian measure
on R then for any Borel set A
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and the density of v,, converges uniformly on compact subsets to ;.

Proof. It is enough to show the first part of the claim for an open interval A = (a,b). Assume
n is large. Note that 7 1(A) = {z € R": a < x; < b}. So for a fixed a < x; < b, D1 ({z1})

is the . — 2 sphere of radius \/n — 22 which we denote by S"2(y/n — 22). Hence
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for all large enough n for some constant
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so consequently lim,, .., 1, = 0. Note that the integrand
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not only pointwise but also uniformly over the closed interval [a,b]. (Which can be deduced by
taking logarithm of both sides and using the inequality

where C' depends on a and b.) Cosequently we can use the dominated convergence theorem and
the result follows. O

Similirlarly this results holds for projections onto higher dimensional subspaces.

6.2.2 Corollary. Let S"™' = {zx € R" : |z|| = \/n} and ji, be the rotation invariant Borel
probability measure on S™~*. Consider

®: S" — RF given by ®(x1, ..., 2,) = (21, ..., 21,0, ..., 0)

Let v, be the the probability measure on R¥ induced by ®. If v is the standard Gaussian
measure on R¥ then for any Borel set A C RF
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and the density of v, ;; converges uniformly on compact subsets to density of ;.

Proof. We will use the Fourier Transform. Consider

R0 = [ o) and 0= [ ot

By definition
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Since [i,, is rotation invariant, by a suitable rotation, we may assume that ¢ = (|||, 0, ...,0). So
by using the previous theorem
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because only the projection of x on the first coordinate enters in ¢-x. This is the Fourier transform
of the density for v,,, which we already know converges uniformly on compact sets in R.

We conclude that v, ;, has a radial density p,, , with p,, () = p,(||z||) and thus p,, , converges
uniformly on compacts because any compact set is contained in a ball centered at the origin. [

We are now ready for the main result.



6.2.3 Definition. A spherical cap centered at a € S™~! with radius r is
B,(r) ={rx € S" ' d(z,a) = arccos(z,a) < r}.
We will use the following theorem of Levy without proof and focus on consequences.
6.2.4 Theorem (Levy). If AC S"', ¢ >0, and B = B,(r) with u(B) = u(A) then
p({z e "1 d(@, A) <t}) > u({z € 8"+ d(x, B) < t}) = u(Ba(r +1))

If B is spherical cap in S"~! with pu(B) = 1/2 then B = B,(r/2) for some a in S"!. Also,
up to a set of measure 0, we have that

Bu(m/2+1t)=S""1—B_,(x/2 1)

and
(Bl /24 1) = 1 = p(B_o(m/2 = 1)) = 1 = p(By(m/2 — 1))
So we want an upper bound for p(B_,(7/2 —t)) to find a lower bound for pu(B_,(7/2 + t)).



