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6.2 Volume of a spherical cap

6.2.1 Lemma. B = Ba(
π
2 − t) in Sn+1 ⊂ Rn+2 has a measure

µn+2(B) ≤
�

π

8
e
−t2n

2

Also,

µn+2(B) ≤ 1

2
e
−t2n

2 (1 + ηn)

with ηn → 0 as n →∞.

Proof. Rotate coordinates so that the center of the cap is a = (1, 0, 0 . . . , 0). If we slice the cap
by hyperlanes with {x ∈ Rn : x1 = cos ϕ}, then we get an n-dimensional sphere of radius sin ϕ.
(Assume ϕ ≥ 0.) Integrating over ϕ gives

µn+2(B)
|Sn|

|Sn+1|

� π
2 +t

0

sinn
ϕdϕ

=
2π

n+1
2

Γ(n+1
2 )

Γ(n+2
2

2π
n+2

2

� π
2

t

cosn
ϕdϕ

Here, we have that cosn
ϕ ≤ (e−

ϕ2

2 )n on [0, π
2 ] and the stuff to the left of the integral is 1√

π

Γ(n+2
2 )

Γ(n+1
2 )

.

Now, letting ϕ
� = ϕ

√
n, we have

µn+2(B) ≤ 1√
π

Γ(n+2
2 )

Γ(n+1
2 )

� √
n(π

2−t)

0

e
−(ϕ�+

√
nt)2/2

dϕ
�

≤
Γ(n+2

2 )

Γ(n+1
2 )

1√
nπ

e
−nt2/2

� ∞

0

e
−(ϕ�)2/2

dϕ
�

= (
1√
2n

Γ(n+2
2 )

Γ(n+1
2 )

e
−nt2/2

where the part in parenthesis → 1.
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By Stirling’s formula,
Γ(n+2

2 )

Γ(n+1
2 )
→ 1

2 as n →∞.

It remains to show that
Γ(n+2

2 )

Γ(n+1
2 )

√
2n
≤

�
π
8

To see this, note that for n = 1 or n = 3,

Γ(2)

Γ(3/2)

1

2
=

�
π

8

Γ(3/2)

Γ(1)

1√
2

=

�
π

8

For the lowest dimensions, equality is achieved. We need to show that this does not get larger
for higher dimensions. Using the functional equation for Γ, Γ(t + 1) = tΓ(t), we have

Γ(n+4
2 )

Γ(n+3
2 )

1�
2(n + 2)

=
Γ(n+2

2 )

Γ(n+1
2 )

n + 2

n + 1

1√
2n

√
sn�

2(n + 2

with the factor n+2
n+1

� n
n+2<1 because

�
1− 2

n + 2
<1− 1

n + 2

by Taylor expansion.

We get the immediate consequence:

6.2.2 Theorem. If f : Sn+1 → R is 1−Lipschitz and mf is its median, then for ε>0 we have:

µn+1({x ∈ Sn+1 : |f(x)−mf | ≥ ε}) ≤
�

π

2
e
−ε2n/2

Proof. We follow the general principle/insight:
Define A+ = {x ∈ Sn+1 : f(x) ≥ mf} and A− = {x ∈ Sn+1 : f(x) ≤ mf}. Then

µ(A+),µ(A−) ≥ 1
2 , and using Levy’s theorem,

µn+2({x : d(x, A±) ≤ ε{) ≥ µn+2({x : d(x, Ba) ≤ ε})

≥ 1−
�

π

8
e
−ε2n/2

Thus intersecting the two sets gives by union bound:

µn+2({x : |f(x)−mf | ≤ ε}) ≥ 1−
�

π

2
e
−ε2n/2
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6.3 Concentration for Gaussian measures

Consider SN−1 ⊂ RN for some large N , and let Φ : (x1, x2, . . . , xN) �→
√

N(x1, x2, . . . , xn) be
the “scaled” projection onto the first n coordinates. Then, as N → ∞, µN induces a measure
which converges to γn.

Next, we deduce measure concentration for γn from that of µN .

6.3.3 Theorem. (Borell) Let A ⊂ Rn be closed and t ≥ 0, and let H = {x ∈ Rn : x · α ≤ b}
for fixed α ∈ Rn,b ∈ R so that γn(H) = γn(A), and then,

γn({x : d(x, A) ≤ t}) ≥ γn({x : d(x, H) ≤ t})

Before proving this theorem, we note that if H = {x ∈ Rn : x · α ≥ 0}, then γn(H) = 1
2 .

Also, denoting H(t) = {x ∈ Rn : d(x, H) ≤ t}, then

γn(H(t)) =
1√
2n

� t

−∞
e
−x2/2

dx

where, without loss of generality, we have α = (1, 0, 0, . . . , 0).
We estimate the measure of H(t).

6.3.4 Lemma. For H(t) ⊂ Rn as above, t ≥ 0, γn(H(t)) ≥ 1− e
−t2/2.

Proof. We have by Laplace transform,

γn({x : x1>t}) ≤ e
−λt

E[eλx1 ] = e
−λt 1√

2π

� ∞

−∞
e

λx1e
−x2

1/2
dx1

= e
−λt

e
λ2/2

Optimizing λ gives λ = t, so γn({x : x1 ≤ t}) ≥ 1− e
−t2/2.

As before, we deduce a concentration result.

6.3.5 Theorem. Let f : Rn → R be 1 − Lipschitz and mf be its median with respect to γn.
Then, for ε>0,

γn({x : |f(x)−mf | ≥ ε}) ≤ 2e−ε2/2

Proof. The proof of this theorem follows the same general strategy as before and is omitted.

We now prove Borell’s theorem.

Proof. Given A ⊂ Rn, A bounded and closed, choose H = {x ∈ Rn : x1 ≤ b} such that
γn(A) = γn(H). Then we know that

lim
n→∞

µN(Φ−1(A)) = lim
N→∞

µN(Φ−1(H)) = γn(H)

Also, Φ−1(H) is a spherical cap with apex a = (1, 0, 0, . . . , 0) and (geodesic) radius rN =
arccos( n√

N
), where N is a scaling term.
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Now consider A(t) = {x : d(x, A) ≤ t} and H(t) = {x : x1 ≤ b + t}.
Then Φ−1(H(t)) = Ba(rN + εN) with a radius rN + εN = arccos( b+t√

N
)

We see that:
t√
N
≤ εN ≤

t√
N

(1 +
(b + t)2

/N

1− (b + t)2/N
)

1
2

≤ t√
N

+ C
(b + t)2

N3/2

and the volume is

µN(Ba(rn + εN)) =
|SN−2|
|SN−1|

� (b+t)
√

N

−1

(1− x
2
1)

N−2(1 +
x

2
1

1− x
2
1

)
1
2 dx1

Considering A(t), by boundedness, ∃c��>0 such that

|xj| ≤
c
��

√
N

, 1 ≤ j ≤ N

and
x ∈ Φ−1(A(t)),

so �(x1, . . . , xn)�2 ≤ n(c��)2

N .
The measure of Φ−1(A(t)) is µN(Φ−1(A(t))

= |S
N−n−1||SN−1|

�

A(t)/
√

N

(1− �x}2)N−n−1(1 +
�x�2

1− �x�2
)n/2

dx1dx2 . . . dxn

≤ CN
n/2

Consider EN = Φ−1(A) ⊂ SN−1.
Then Φ−1(A(t)) ⊂ EN(BN) with

t√
N
≤ BN ≤

t√
N

(1 +
n(c��)2

/N

1− n(c��)2/N
)

1
2 ≤ t

√
N +

c
���

N3/2

Thus, by optimality of spherical caps,

µn(Ba(rN + βn)) ≤ µN(EN(βN)) + ηn

where ηN → 0 as n →∞.
Taking N →∞ gives

lim
N

µN(Ba(r + βN)) = γN(H(t)) ≤ lim
N

µN(EN(βN)) = γn(A(t))

Convergence on the left hand side is because βN − εN<
C

N3/2 and changes in the (upper) limit

of the integral smaller than C/N
3/2 do not contribue to the volume, since |SN−1|/|SN−1| ≤ c

�
N

1
2 .

Convergence on the right hand side follows from a similar argument concerning the volume
of EN(BN) versus Φ−1(A(t)).

To generalize to unbounded A, take limits over bounded subsets.
This concludes the section on concentration about the median.
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7 Concentration about the mean for Gaussians

Maurey/Pisier idea: Instad of mf ,∂f , let the function concentrate about “itself”.
Take f : Rn → R. Define F : R2n = Rn ⊕ Rn, F (x, y) = f(x) − f(y) in the space with

measure γ2n = γn(x)× γn(y).
If F concentrates near 0, then f concentrates somewhere.
We will also use the rotation-invariance of the Gaussian measure under

�
x

y

�
�→

�
cos θ sin θ

− sin θ cos θ

� �
x

y

�

Instead of Lipschitz continuity, consider the smaller set of differentiable functions with �� f� =
(
�n

i=1(
∂f
∂xi

)2)
1
2 ≤ 1.

We let E[f ] = 1
(2π)n/2

�
Rn f(x)e−�x�

2/2
dx and note that e

a·x gives E[ea·x] = e
�a�2/2.

7.0.1 Theorem. Consider a differentiable function f : Rn → R with E[f ] = 0. Then

E[ef ] ≤ E[exp(
π

2

8
� � f�2)]

if the right hand side is finite.

Proof. We introduce F : R2n → R, F (x, y) = f(x)− f(y), then E[ef ] ≤ E[eF ] because

E[eF ] =

�

R2n

e
f(x)−f(y)

dγ2n =

�

Rn

e
f(x)

dγn(x)

�

Rn

e
−f(y)

dγn(y)

≥ E[ef ]

where �

Rn

e
−f(y)

dγn(y) ≥ e
−

R
Rn f(y)dγn(y)

Now, rotate coordinates and let G(x, y, θ) = f(x cos θ+y sin θ) with x(θ) = x cos θ+y sin θ,
y(θ) = cos θy − sin θx = x

�(θ).
Then,

G(x, y, 0) = f(x), G(x, y,
π

2
) = f(y)

and

F (x, y) = G(x, y, 0)−G(x, y,
π

2
) =

� 0

π
2

∂

∂θ
G(x, y, θ)dθ.
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