High-Dimensional Measures and Geometry
Lecture Notes from Feb 23 and Feb 25, 2010

taken by J.N. Andrews

6.2 Volume of a spherical cap

6.2.1 Lemma. B = B,(5 —t) in S"™' C R™"* has a measure
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with n,, — 0 as n — oo.

Proof. Rotate coordinates so that the center of the cap is a = (1,0,0...,0). If we slice the cap
by hyperlanes with {x € R"™ : 21 = cos ¢}, then we get an n-dimensional sphere of radius sin ¢.
(Assume ¢ > 0.) Integrating over ¢ gives
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Here, we have that cos™ ¢ < (e~ )" on [0, Z] and the stuff to the left of the integral is =
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Now, letting ' = ¢/, we have
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where the part in parenthesis — 1.



By Stirling’s formula, -2
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For the lowest dimensions, equality is achieved. We need to show that this does not get larger
for higher dimensions. Using the functional equation for I', I'(¢ 4+ 1) = ¢I'(¢), we have
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by Taylor expansion.

We get the immediate consequence:
6.2.2 Theorem. /f f : S"*!' — R is 1 — Lipschitz and my is its median, then for >0 we have:

s ({ € 8™ [ f(2) —my] > €}) < ﬁ/

Proof. We follow the general principle/insight:

Define A, = {x € S"*' : f(z) > ms} and A_ = {z € S"™ . f(x) < my}. Then
1(Ay) u(AZ) > 5, and using Levy's theorem,

pni2({2 - d(x, Ar) < e{) = pni2({ : d(z, Bs) < €})
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Thus intersecting the two sets gives by union bound:
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6.3 Concentration for Gaussian measures

Consider SN~  RY for some large N, and let ® : (zy,29,...,2x5) — VN(z1,29,...,2,) be
the “scaled” projection onto the first n coordinates. Then, as N — oo, uy induces a measure
which converges to v,.

Next, we deduce measure concentration for =, from that of uy.

6.3.3 Theorem. (Borell) Let A C R™ be closed andt > 0, and let H = {x € R" : - o < b}
for fixed o € R",b € R so that v,(H) = v,(A), and then,

m({z:d(z, A) <t}) = y({z : d(z, H) < t})

Before proving this theorem, we note that if H = {x € R" : x - a > 0}, then v,(H) =
Also, denoting H(t) = {z € R" : d(x, H) < t}, then

T(H(t)) = \/%/_ e Py

where, without loss of generality, we have o = (1,0,0,...,0).
We estimate the measure of H(t).
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6.3.4 Lemma. For H(t) C R™ as above, t > 0, v,(H(t)) > 1 — o—t2/2.

Proof. We have by Laplace transform,
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Optimizing A gives A = ¢, so v,({x : 21 <t}) > 1— e t?/2.

As before, we deduce a concentration result.

6.3.5 Theorem. Let f : R" — R be 1 — Lipschitz and my be its median with respect to ,.
Then, for e>0,
Y{z : |f(z) —mg| > e}) < 2e° /2

Proof. The proof of this theorem follows the same general strategy as before and is omitted. [

We now prove Borell's theorem.

Proof. Given A C R", A bounded and closed, choose H = {z € R" : 27 < b} such that
Yn(A) = v,(H). Then we know that

lim pox (O7(A)) = lim i (971 (H)) = 7 (H)
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Also, ®~!(H) is a spherical cap with apex a = (1,0,0,...,0) and (geodesic) radius ry =
arccos(\/”—ﬁ), where N is a scaling term.



Now consider A(t) = {z : d(z,A) <t} and H(t) = {z:x; < b+ t}.

Then ®~1(H(t)) = B (rN + ey) with a radius ry + ey = arccos(f/%)
We see that: b+ 1)2/N
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and the volume is
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Considering A(t), by boundedness, 3¢”>0 such that
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Consider Ey = @7 1(A) c SV-L.
Then ®71(A(t)) C Ex(By) with
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Thus, by optimality of spherical caps,

pn(Ba(rn + 5r)) < un(En(BN)) + 1
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where ny — 0 as n — oo.
Taking N — oo gives

hj{fﬂ pn(Ba(r + Bn)) = v (H (1)) < h]{fﬂ pn(En(Bn)) = a(A(t))

Convergence on the left hand side is because Gy —€N<# and changes in the (upper) limit

of the integral smaller than C'//N3/2 do not contribue to the volume, since |S¥ 1| /|SN~!| < ¢/Nz.
Convergence on the right hand side follows from a similar argument concerning the volume

of Ex(By) versus @ 1(A(t)).
]

To generalize to unbounded A, take limits over bounded subsets.
This concludes the section on concentration about the median.



7 Concentration about the mean for Gaussians

Maurey/Pisier idea: Instad of my,0;, let the function concentrate about “itself"”.
Take f : R" — R. Define F : R* = R" @ R", F(x,y) = f(z) — f(y) in the space with

measure Yo, = Yo () X Yn(Yy).
If F" concentrates near 0, then f concentrates somewhere.

We will also use the rotation-invariance of the Gaussian measure under

r\ cosf sind T

Yy —sinf cosf Y
Instead of Lipschitz continuity, consider the smaller set of differentiable functions with || <7 f|| =
(O (Fh)?)z < 1.

We let E[f] = 5577 Jen f(x)e 1#1"/2dz and note that e** gives E[e**] = ellol’/2,

7.0.1 Theorem. Consider a differentiable function f : R™ — R with E[f] = 0. Then
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if the right hand side is finite.

Proof. We introduce F : R — R, F(x,y) = f(z) — f(y), then E[e/] < Elef’] because

E[eF]:/ ef@=1W) gy, /ef(f”)d%(x)/ e_f(y)d%(y)
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where
/ e*f(y)dyn(y) > ¢ Jen FW)d1n(y)

Now, rotate coordinates and let G(x,y,0) = f(z cos@+ysin ) with z(0) = x cosf+ysinb,
y(0) = cos by — sinbz = 2/(0).

Then,
T

G(ZL‘,y,O) = f(l'), G(I‘,y, 5) = f(y)

and
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