High-Dimensional Measures and Geometry
Lecture Notes from April 8, 2010

taken by Anando Sen

9.5.1 Lemma. Givenanormp:R" — R, let B={z € R" : p(x) < 1}. Let § > 0,p > 1 such
that u(pB) > (1 + p)u(B) then for some ¢ > 0 we have,

pu(tB) < ctp(B)
forall0 <t < 1.

Proof. (continued from the previous class)
Let x(m) be such that,

For all m € N we have proved,

w(tnB) < 24 u(B) Vi, = -

So consider all m € N such that k(m) > %f,thus,

() > 2nl) > ()

We recall the Brunn-Minkowski inequality
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and choosing 7 =7/, A = &, and using assumptions on m € N, p1 (3= B) > % gives,

op(B)

T(Al) 2 om

Repeating the above procedure for A, 1, A, 2,...A: with 7 = 7/, A = - to get estimate
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for A gives,
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So adding these contributions and using U C B, with Ay = ﬁB, yields,
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By our assumption x > 2—5, so
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So,
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Now, the sequence x(m) must be bounded because for each m > 2,
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is a difference quotient for = +— (%):c, 0<z< % and thus the difference quotient is bounded.
By derevative at right endpoint x = % and thus,
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So k cannot grow arbitrarily large.

We claimed
In (/ pd,u) §c+/ In pdp

Assume [, pdp = 1. We want to show [Inpdy > —oo. If t >0, let B, = {x € R" : p(x) < t}
pick radius such that p(B,) = % Since 1 is a probability measure,

e e R ip) =4y < [ Mg g
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So p<4.
Using norm concentration forfor log concave measures with r = % t=3,

Define norm p’ = %, then

B = {zeR":p'(x) <1}
{z eR":p(z) < p} =B,
and u(B') > (14 0) pu(Bj) with 6 > 0. Thus for some € > 0, u(B;) < ct, for all 0 <t < e we
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select € < 1.
Let F(t) = u(B;) then,
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