Practice Exam #2 Fall 2014
Math 1450

Name: Student ID:

1. (a) State a property of a function f defined on an interval [a, b] which ensures that f is
integrable on [a, b]. Choose a property which shows that many kinds of functions are
integrable.

(b) Assuming f is integrable on [a, ], state an expression for the integral of f from a to
b as a limit of sums.



2. Suppose f has a continuous derivative on [0,5], f(0) =2 and 1 < f'(x) <2 for all z in
[0,5]. With the help of known facts from class, show that

£(5) < 12.



3. The velocity of a particle at time ¢ is v(t) = 3t — 5.

(a) Find the displacement of the particle from ¢ = 0 to ¢ = 3.

(b) Find the total distance traveled by the particle from ¢ = 0 to ¢t = 3.



4. Evaluate the following definite or indefinite integrals:
(a)
w/2
/ sin(2x) cos(x)dx
0

/(1 + 2tan(t))? sec?(t)dt



4
/ |z — 2|dx
0

3
/ xlog(z)dx
1



/ tan3(z) sec® (z)dx



5. Use a trigonometric substitution to compute [ 2°v/2? — 1dz.

6. Use integration by parts and the identity sin” z 4 cos? z = 1 to relate the indefinite integral
1, = fsin" xdx to I,,_o, where n > 2 is an even integer.



5x% + 6x +4

@ ta?—2
polynomial in the denominator.

7. Decompose into partial fractions. As a first step, try to guess a zero of the



8. Show, by considering a Riemann sum or otherwise, that for each positive integer n,



to a simpler function show that

/1 LS.
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9. By comparing
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10. Show that if f is a continuous, even function and F' an antiderivative of f which has the
value F'(0) =0, then Fis an odd function. Hint: FTC and substitution.
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11. Does fol In xdx exist? If so, how is this integral defined?
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(b) Assuming f is integrable on [a, b], state an expression for the integral of f from a to
b as a limit of sums.
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2. Suppose f has a continuous derivative on [0,5], f(0) =2 and 1 < f'(x) <2 forall xin
0,5]. With the help of known facts from class, show that

f(5) =12.
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3. The velocity of a particle at time ¢ is v(t) = 3t — 5.

(a) Find the displacement of the part:i$c1e fromt=0tot =3.
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(b) Find the total distance traveled by the particle from t = 0 to t = 3.
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4. Evaluate the following definite or indefinite integrals:
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/tan3(x) sec’(z)dz = Sec x

ol = seckdexols
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5. Use a trigonometric substitution to compute [ 23V/x? — 1dz.
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6. Use integration by parts and the identity sin® z + cos? z = 1 to relate the indefinite integral
I, = fsin” zdz to I,_o, where n > 2 is an even integer.
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5x2 + 6z +4 . . : .
7. Decompose —%—ETCE% into partial fractions. As a first step, try to guess a zero of the
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9. By comparing Wz;ﬁ to a simpler function show that .
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. Show, by considering a Riemann sum or otherwise, that for each positive integer n,
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10. Show that if f is a continuous, even function and F' an antiderivative of f which has the
value F'(0) = 0, then F is an odd function. Hint: FTC and substitution.
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11. Does fol In zdz exist? If so, how is this integral defined?
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