Math4310/Biol6317 Summary

October 4, 2011

1 Set theory

- 1. The symbol \subset means "is a subset of", and \in means "is an element of".
- 2. The sample space, Ω , is the space of all possible outcomes of an experiment.
- An event, say A ⊂ Ω, is a subset of Ω.
- 4. The **union** of two events, $A \cup B$, is the collection of elements that are in A, B or both.
- The intersection of two events, A ∩ B, is the collection of elements that are in both A and B.
- 6. The complement of an event, say \bar{A} or A^c , is all of the elements of Ω that are not in A.
- 7. The **null** or **empty** set is denoted \emptyset .
- 8. Two sets are **disjoint** or **mutually exclusive** if their intersection is empty, $A \cap B = \emptyset$.
- 9. **DeMorgan's laws** state that $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$.

2 Probability essentials

- A probability measure, say P, is a function on the collection of events to [0,1] so that
 the following three properties hold:
 - a. $P(\Omega) = 1$.
 - b. If $A \subset \Omega$ then $P(A) \geq 0$.
 - c. If A₁,..., A_n are disjoint then (finite additivity) P(∪_{i=1}ⁿ A_i) = ∑_{i=1}ⁿ P(A_i).
- 2. $P(\bar{A}) = 1 P(A)$.
- The odds of an event, A, are P(A)/(1 P(A)) = P(A)/P(Ā).
- 4. $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- 5. If $A \subset B$ then $P(A) \leq P(B)$.

- 6. Two events A and B are independent if P(A∩B) = P(A)P(B). A collection of events, {A_i}ⁿ_{i=1}, are independent if for any subset J ⊂ {1, 2, ...n}, we have P(∩_{i∈J}A_i) = ∏_{i∈J}P(A_i). If this holds for all sets J with size |J| = 2 then we say the collection is pairwise independent.
- Pairwise independence of a collection of events does not imply independence, though the reverse is true
- 8. Given that P(B) > 0, the conditional probability of A given that B has occurred is $P(A|B) = P(A \cap B)/P(B)$.
- 9. Two events A and B are **independent** if and only if P(A|B) = P(A).
- 10. The law of total probability states that if A_i are a collection of mutually exclusive events so that Ω = ∪ⁿ_{i=1}A_i, then P(C) = ∑ⁿ_{i=1}P(C|A_i)P(A_i) for any event C.
- Bayes's rule states that if A_i are a collection of mutually exclusive events so that Ω = ∪ⁿ_{i=1}A_i, then

$$P(A_j|C) = \frac{P(C|A_j)P(A_j)}{\sum_{i=1}^{n} P(C|A_i)P(A_i)}.$$

for any set C (with positive probability). Notice A and \bar{A} are disjoint and $A \cup A^c = \Omega$ so that we have

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}.$$

- 12. The sensitivity of a diagnostic test is defined to be P(+|D) where + (-) is the event of a positive (negative) test result and D is the event that a subject has the disease in question. The specificity of a diagnostic test is P(-|D^c).
- 13. Bayes's rule yields that

$$P(D|+) = \frac{P(+|D)P(D)}{P(+|D)P(D) + P(+|D^c)P(D^c)},$$

and

$$P(D^{c}|-) = \frac{P(-|D^{c})P(D^{c})}{P(-|D^{c})P(D^{c}) + P(-|D)P(D)}$$

- 14. The likelihood ratio of a positive test result is DLR₊ = P(+|D)/P(+|D̄) = sensitivity/(1-specificity). The likelihood ratio of a negative test result is DLR₋ = P(-|D̄)/P(-|D) = specificity/(1 sensitivity).
- 15. The odds of disease after a positive test are related to the odds of disease before the test by the relation

$$\frac{P(D|+)}{P(D^c|+)} = \frac{P(+|D)}{P(+|D^c)} \frac{P(D)}{P(D^c)}.$$

That is, the posterior odds equal the prior odds times the likelihood ratio. Correspondingly,

$$\frac{P(D^c|-)}{P(D|-)} = \frac{P(-|D^c)}{P(-|D)} \frac{P(D^c)}{P(D)}.$$

3 Random variables

- A random variable is a function from Ω to the real numbers. A random variable is a random number that is the result of an experiment governed by a probability distribution.
- A Bernoulli random variable is one that takes the value 1 with probability p and 0 with probability (1 − p). That is, P(X = 1) = p and P(X = 0) = 1 − p.
- 3. A probability mass function (pmf) is a function that yields the various probabilities associated with a random variable. For example, the probability mass function for a Bernoulli random variable is f(x) = p^x(1-p)^{1-x} for x = 0, 1 as this yields p when x = 1 and (1-p) when x = 0.
- The expected value or (population) mean of a discrete random variable, X, with pmf f(x) is

$$\mu = E[X] = \sum x f(x).$$

The mean of a Bernoulli variable is then 1f(1) + 0f(0) = p.

The variance of any random variable, X, (discrete or continuous) is

$$\sigma^2 = E\left[(X-\mu)^2\right] = E[X^2] - E[X]^2.$$

The latter formula being the most convenient for computation. The variance of a Bernoulli random variable is p(1-p).

- 6. The (population) standard deviation, σ , is the square root of the variance.
- Chebyshev's inequality states that for any random variable P(|X − μ| ≥ Kσ) ≤ 1/K².
 This yields a way to interpret standard deviations.
- A Binomial random variable, X, is obtained as the sum of n Bernoulli random variables and has pmf

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}.$$

Binomial random variables have expected value np and variance np(1-p).

4 Continuous random variables

- Continuous random variables take values on the continuum of the real numbers or even higher-dimensional real vector spaces.
- A continuous random variable X has a probability density function (pdf) f if for all a < b,

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx.$$

To be a pdf, a function must be positive and integrate to 1. That is, $\int_{-\infty}^{\infty} f(x)dx = 1$

- If h is a positive function such that ∫_{-∞}[∞] h(x)dx ≤ ∞ then f(x) = h(x) / ∫_{-∞}[∞] h(x)dx is a valid density. Therefore, if we only know a density up to a constant of proportionality, then we can figure out the exact density.
- 4. The expected value, or mean, of a continuous random variable, X, with pdf f, is

$$\mu = E[X] = \int_{-\infty}^{\infty} t f(t) dt.$$

- 5. The variance is $\sigma^2 = E[(X \mu)^2] = E[X^2] E[X]^2$.
- 6. The distribution function, say F, corresponding to a random variable X with pdf, f, is

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(t)dt.$$

(Note the common convention that X is used when describing an unobserved random variable while x is for specific values.)

 The pth quantile (for 0 ≤ p ≤ 1), say X_p, of a distribution function, say F, is the point so that F(X_p) = p. For example, the .025th quantile of the standard normal distribution is -1.96.

5 Properties of expected values and variances

The following properties hold for all expected values (discrete or continuous)

- 1. Expected values commute across sums: E[X + Y] = E[X] + E[Y].
- 2. Multiplicative and additive constants can be pulled out of expected values E[cX] = cE[X] and E[c+X] = c + E[X].
- 3. For independent random variables, X and Y, E[XY] = E[X]E[Y].
- In general, E[h(X)] ≠ h(E[X]).
- 5. Variances sum for independent variables Var(X + Y) = Var(X) + Var(Y).
- 6. Multiplicative constants are squared when pulled out of variances $Var(cX) = c^2 Var(X)$.
- 7. Additive constants do not change variances: Var(c + X) = Var(X).

6 The normal distribution

1. The normal or Gaussian density, often also called "bell curve", is a very common density. It is specified by its mean, μ, and variance, σ². The density is given by f(x) = (2πσ²)^{-1/2} exp{-(x - μ)²/2σ²}. We write X ~ N(μ, σ²) to denote that X is normally distributed with mean μ and variance σ².

$$\phi(z) = (2\pi)^{-1/2} \exp\{-z^2/2\}.$$

The standard normal distribution function is usually labeled Φ .

- If f is the pdf for a N(μ, σ²) random variable, X, then note that f(x) = φ{(x − μ)/σ}/σ.
 Correspondingly, if F is the associated distribution function for X, then F(x) = Φ{(x − μ)/σ}.
- 4. If X is normally distributed with mean μ and variance σ^2 then the random variable $Z=(X-\mu)/\sigma$ is standard normally distributed. Taking a random variable subtracting its mean and dividing by its standard deviation is called "standardizing" a random variable.
- 5. If Z is standard normal then $X = \mu + Z\sigma$ is normal with mean μ and variance σ^2 .
- Approximately 68%, 95% and 99% of the mass of any normal distribution lies within 1, 2 and 3 (respectively) standard deviations from the mean.
- 7. Henceforth, the quantity Z_{α} refers to the α^{th} quantile of the standard normal distribution. $Z_{.90}$, $Z_{.95}$, $Z_{.975}$ and $Z_{.99}$ are 1.28, 1.645, 1.96 and 2.32.
- Sums and means of normal random variables are normal (regardless of whether or not they are independent). You can use the rules for expectations and variances to figure out μ and σ.
- The sample variance of iid normal random variables, appropriated normalized, is a Chisquared random variable (see below).

7 Sample means and variances

Throughout this section let X_i be a collection of iid random variables with mean μ and variance σ^2 .

- 1. We say random variables are iid if they are independent and identically distributed.
- 2. For random variables, X_i , the sample mean is $\bar{X} = \sum_{i=1}^n X_i/n$.
- 3. $E[\bar{X}] = \mu = E[X_i]$ (does not require the independence or constant variance).
- 4. If the X_i are iid with variance σ^2 then $Var(\bar{X}) = Var(X_i)/n = \sigma^2/n$.
- 5. The sample variance is defined to be

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}.$$

6. $\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} X_i^2 - n\bar{X}^2$ is a shortcut formula for the numerator.

- o/√n is called the standard error of X̄. The estimated standard error of X̄ is S/√n.
 Do not confuse dividing by this √n with dividing by n − 1 in the calculation of S².
- 8. An estimator is unbiased if its expected value equals the parameter it is estimating.
- 9. $E[S^2] = \sigma^2$, which is why we divide by n-1 instead of n. That is, S^2 is unbiased.
- If the X_i are normally distributed with mean μ and variance σ², then X̄ is normally distributed with mean μ and variance σ²/n.
- The Central Limit Theorem. If the X_i are iid with mean μ and (finite) variance σ²
 then

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

will limit to a standard normal distribution. The result is true for small sample sizes, if the X_i iid normally distributed.

12. If we replace σ with S; that is,

$$Z = \frac{\bar{X} - \mu}{S/\sqrt{n}},$$

then Z still limits to a standard normal. If the X_i are iid normally distributed, then Z follows the Students T distribution for small n.

8 Confidence intervals for a mean using the CLT.

1. Using the CLT, we know that

$$P\left(-Z_{1-\alpha/2} \leq \frac{\bar{X} - \mu}{S/\sqrt{n}} \leq Z_{1-\alpha/2}\right) \approx 1 - \alpha$$

for large n. Solving the inequalities for μ , we calculated that in repeated sampling, the interval

$$\bar{X} \pm Z_{1-\alpha/2} \frac{S}{\sqrt{n}}$$

will contain μ approximately $100(1-\alpha)\%$ of the time.

- 2. Fixing the confidence level controls the accuracy of the interval. A 95% interval has 95% coverage regardless of the sample size. (Again, assuming that the CLT has kicked in.) Increasing n will improve the precision (width) of the interval.
- Prior to conducting a study, you can fix the margin of error (half width), say δ, of the interval by setting n = (Z_{1-α/2}σ/δ)². Round up, to be on the safe side. Requires an estimate of σ.

9 Confidence intervals for the variance and for the T distribution

- 1. If X_i are iid normal random variables with mean μ and variance σ^2 then $\frac{(n-1)S^2}{\sigma^2}$ follows what is called a Chi-squared distribution with n-1 degrees of freedom.
- 2. Using the previous item, we know that

$$P\left(\chi_{n-1,\alpha/2}^2 \leq \frac{(n-1)S^2}{\sigma^2} \leq \chi_{n-1,1-\alpha/2}^2\right) = 1-\alpha,$$

where $\chi^2_{n-1,\alpha}$ denotes the α^{th} quantile of the Chi-squared distribution. Solving these inequalities for σ^2 yields

$$\left[\frac{(n-1)S^2}{\chi^2_{n-1,1-\alpha/2}}, \frac{(n-1)S^2}{\chi^2_{n-1,\alpha/2}}\right]$$

is a $100(1-\alpha)\%$ confidence interval for σ^2 . Recall this assumes that the X_i are iid Gaussian random variables.

- 3. The fact that $(n-1)S^2 \sim \text{Gamma}((n-1)/2, 2\sigma^2)$ can be used to create a likelihood interval for σ or σ^2 .
- Chi-squared tests, intervals and likelihood intervals for variances depend on the normality assumption, there is no approximate formula for quantiles as for the mean, derived from the CLT.
- If Z is standard normal and X is and independent Chi-squared with df degrees of freedom then Z/X/df follows what is called a Student's T distribution with df degrees of freedom.
- The Student's T density looks like a normal density with heavier tails (so it looks more squashed down).
- By the previous item, if the X_i are iid N(μ, σ²) then

$$Z = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

follows a Student's T distribution with (n-1) degrees of freedom. Therefore if $t_{n-1,\alpha}$ is the α^{th} quantile of the Student's T distribution then

$$\bar{X} \pm t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}$$

is a $100(1 - \alpha)\%$ confidence interval for μ .

8. The Student's T confidence interval assumes normality of the X_i. However, the T distribution has quite heavy tails and so the interval is larger compared the normal distroibution and works well in many situations.

- For large sample sizes, the Student's T and CLT based intervals are nearly the same because the Student's T quantiles become more and more like standard normal quantiles as n increases.
- 10. For small sample sizes, it is difficult to diagnose normality/lack of normality. Regardless, the robust T interval should be your default option.