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1 Set theory

1. The symbol C means “is a subset of”, and € means “is an element of”.

2. The sample space, 2, is the space of all possible outcomes of an experiment.

w

. An event, say A C €, is a subset of .

'

. The union of two events, AU B, is the collection of elements that are in A, B or both.

. The intersection of two events, AN B, is the collection of elements that are in both A
and B.

;. The complement of an event, say A or A°, is all of the clements of € that are not in A.

-

. The null or empty set is denoted (.

o

. Two sets are disjoint or mutually exclusive if their intersection is empty, AN B = ().

©

. DeMorgan’s laws state that (AU B)° = A°N B and (AN B)° = A°U B*.

2 Probability essentials

1. A probability measure, say P, is a function on the collection of events to [0,1] so that
the following three properties hold:

a P(Q)=1.

b. If A C Q then P(A) > 0.

c If Ay, ...,z A, are disjoint then (finite additivity) P(UL, A;) = >0, P(A:).
2. P(A)=1-P(A).

w

. The odds of an event, A, are P(A)/(1 — P(A)) = P(A)/P(A).

'

. P(AUB) = P(A) + P(B) — P(AN B).

_If AC B then P(A) < P(B).
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. Two events A and B are independent if and only if P(A

. Two events A and B are independent if P(ANB) = P(A)P(B). A collection of events,

{A;}",, are independent if for any subset J C {1,2,...n}, we have P(NicsA;) =
[Lics P(Ai). If this holds for all sets J with size |J| = 2 then we say the collection is
pairwise independent.

. Pairwise independence of a collection of events does not imply independence, though the

reverse is true.

. Given that P(B) > 0, the conditional probability of A given that B has occurred is

P(A|B) = P(AN B)/P(B).

) = P(A).
The law of total probability ;tatm that if A; are a collection of mutually exclusive
events so that Q = U A;, then P(C) = Y7 | P(C|A;)P(4;) for any event C.

Bayes’s rule states that if A; are a collection of mutually exclusive events so that Q =
7, A;, then
P(C|A;)P(A;)
P(A; o 2 L
! 2in P(CIA)P(A)

for any set C' (with positive probability). Notice A and A are disjoint and AU A° = Q so

that we have
P(B|A)P(A)
P(B|A)P(A) + P(B|A¢)P(A°)

0)=

P(AB) =

. The sensitivity of a diagnostic test is defined to be P(+|D) where + (—) is the event

of a positive (negative) test result and D is the event that a subject has the disease in
question. The specificity of a diagnostic test is P(—|D).

Bayes’s rule yields that

B P(+|D)P(D)

PO = BEIBIPD) + P+ DIP(DY)
and

Pl - PEDIPDY

P(=|D°)P(D°) + P(=|D)P(D)’

The likelihood ratio of a positive test result is DLR, = P(+|D)/P(+|D) = sensitivity/(1—
specificity). The likelihood ratio of a negative test result is DLR_ = P(—|D)/P(—|D) =
specificity /(1 — sensitivity).

. The odds of disease after a positive test are related to the odds of disease before the test

by the relation

P(D|+) _ P(+|D) P(D)

P(De|+) — P(+|D¢) P(De)’
That is, the posterior odds equal the prior odds times the likelihood ratio. Correspond-
ingly,

P(D=) _ P(=|D%) (DY)
P(DI-) ~ P(~[D) P(D)’




3 Random variables

1. A random variable is a function from € to the real numbers. A random variable is a
random number that is the result of an experiment governed by a probability distribution.

2. A Bernoulli random variable is one that takes the value 1 with probability p and 0 with
probability (1 —p). That is, P(X =1) =pand P(X =0)=1—p.

3. A probability mass function (pmf) is a function that yields the various probabilities
associated with a random variable. For example, the probability mass function for a
Bernoulli random variable is f(z) = p®(1 — p)'~* for 2 = 0, 1 as this yields p when z = 1
and (1 —p) when z = 0.

4. The expected value or (population) mean of a discrete random variable, X, with pmf
f(z)is
p=BX] =Y zf(x).

The mean of a Bernoulli variable is then 1f(1) + 0f(0) = p.
5. The variance of any random variable, X, (discrete or continuous) is
o> =FE[(X —p)’] = E[X*] - E[X]*.

The latter formula being the most convenient for computation. The variance of a Bernoulli
random variable is p(1 — p).

o

. The (population) standard deviation, o, is the square root of the variance.

-

. Chebyshev’s inequality states that for any random variable P(|X —pu| > Ko) < 1/K2
This yields a way to interpret standard deviations.

8. A Binomial random variable, X, is obtained as the sum of n Bernoulli random variables
and has pmf

PX=k)= < i >p'“(1 -k

Binomial random variables have expected value np and variance np(1 — p).

4 Continuous random variables

1. Continuous random variables take values on the continuum of the real numbers or even
higher-dimensional real vector spaces.

2. A continuous random variable X has a probability density function (pdf) f if for all
a<b,

b
Pla< X <b) = / f(x)dx.
To be a pdf, a function must be positive and integrate to 1. That is, f:o f(x)de =1

3



3. If h is a positive function such that [*_h(z)dz < oo then f(x) = h(x)/ [* h(z)dx is a
valid density. Therefore, if we only know a density up to a constant of proportionality,
then we can figure out the exact density.

4. The expected value, or mean, of a continuous random variable, X, with pdf f, is
u=EX]|= / tf(t)dt.

5. The variance is 02 = E[(X — p)?] = E[X? — E[X]%

o

. The distribution function, say F, corresponding to a random variable X with pdf, f,
is

P(X <a)=F(z) = [ F(t)dt.

(Note the common convention that X is used when describing an unobserved random
variable while z is for specific values.)

-

. The p*" quantile (for 0 < p < 1), say X,, of a distribution function, say F, is the point
so that F(X,) = p. For example, the .025"" quantile of the standard normal distribution
is -1.96.

5 Properties of expected values and variances
The following properties hold for all expected values (discrete or continuous)
1. Expected values commute across sums: E[X + Y] = E[X] + E[Y].

2. Multiplicative and additive constants can be pulled out of expected values E[cX]| = cE[X]
and E[c+ X| = ¢+ E[X].

3. For independent random variables, X and Y, E[XY] = E[X]E[Y].

'

. In general, E[h(X)] # h(E[X]).

. Variances sum for independent variables Var(X +Y') = Var(X) + Var(Y').

o

. Multiplicative constants are squared when pulled out of variances Var(cX) = ¢?Var(X).

-

. Additive constants do not change variances: Var(c 4+ X) = Var(X).

6 The normal distribution

1. The normal or Gaussian density, often also called “bell curve”, is a very common
density. It is specified by its mean, j, and variance, 0. The density is given by f(z) =
(2ma?) V2 exp{—(z — p1)?/20}. We write X ~ N(,0?) to denote that X is normally
distributed with mean g and variance o2.



2. The standard normal density, labeled ¢, corresponds to a normal density with mean
u =0 and variance ¢? = 1.

b(2) = (2m) "2 exp{—2?/2}.

The standard normal distribution function is usually labeled ®.

w

. If f is the pdf for a N(,0?) random variable, X, then note that f(z) = ¢{(x —u)/o}/o.
Correspondingly, if F' is the associated distribution function for X, then F(z) = ®{(z —

n)/a}.

4. If X is normally distributed with mean g and variance ¢ then the random variable
Z = (X —p)/o is standard normally distributed. Taking a random variable subtracting its
mean and dividing by its standard deviation is called “standardizing” a random variable.

5. If Z is standard normal then X = p + Zo is normal with mean p and variance o2.

6. Approximately 68%, 95% and 99% of the mass of any normal distribution lies within 1,
2 and 3 (respectively) standard deviations from the mean.

th

-

. Henceforth, the quantity Z, refers to the o' quantile of the standard normal distribution.
Zgo, Zgs, Zors and Zgg are 1.28, 1.645, 1.96 and 2.32.

o

. Sums and means of normal random variables are normal (regardless of whether or not
they are independent). You can use the rules for expectations and variances to figure out
v and o.

©

. The sample variance of iid normal random variables, appropriated normalized, is a Chi-
squared random variable (see below).

7 Sample means and variances

Throughout this section let X; be a collection of iid random variables with mean p and
variance o2.

1. We say random variables are iid if they are independent and identically distributed.
2. For random variables, X;, the sample mean is X = ZZ;I Xi/n.

3. E[X] = p = E[X,] (does not require the independence or constant variance).

4. Tf the X; are iid with variance o® then Var(X) = Var(X;)/n = o2/n.

5. The sample variance is defined to be

_TL(X- X

2
n—1

6. 30 (X — X)2 = )y XZ— nX? is a shortcut formula for the numerator.



7. o/y/n is called the standard error of X. The estimated standard error of X is S/\/n.
Do not confuse dividing by this /n with dividing by n — 1 in the calculation of S%.

o

. An estimator is unbiased if its expected value equals the parameter it is estimating.
9. E[S?] = 02, which is why we divide by n — 1 instead of n. That is, S? is unbiased.

10. If the X, are normally distributed with mean z and variance o2, then X is normally
distributed with mean p and variance o2/n.

11. The Central Limit Theorem. If the X; are iid with mean p and (finite) variance o
then -
X—p

T a/vn
will limit to a standard normal distribution. The result is true for small sample sizes, if
the X; iid normally distributed.

12. If we replace o with S; that is, B

X—p

S/yn’

then Z still limits to a standard normal. If the X; are iid normally distributed, then Z
follows the Students T distribution for small n.

7=

8 Confidence intervals for a mean using the CLT.

1. Using the CLT, we know that

X—pu
P\ =Zicapp € o77= < Zia, ~1-
(-2 = Sy < o) =10

for large n. Solving the inequalities for y, we calculated that in repeated sampling, the
interval
X2y
1-a/2 v
will contain g approximately 100(1 — )% of the time.
2. Fixing the confidence level controls the accuracy of the interval. A 95% interval has
95% coverage regardless of the sample size. (Again, assuming that the CLT has kicked
in.) Increasing n will improve the precision (width) of the interval.

3. Prior to conducting a study, you can fix the margin of error (half width), say 9, of
the interval by setting n = (Z1_q/20/)%. Round up, to be on the safe side. Requires an
estimate of 0.



9 Confidence intervals for the variance and for the T
distribution

1. If X; are iid normal random variables with mean p and variance o2 then g”;;}iz follows
what is called a Chi-squared distribution with n — 1 degrees of freedom.

2. Using the previous item, we know that

(n—1)5?
2

P (Xi*l,r_\/Z < < Xia.kgz) =1l-a,

where y2_,, denotes the a™

inequalities for o2 yields

quantile of the Chi-squared distribution. Solving these

(n—1)5? (n—1)5?
Xifl,xw/z‘ Xifm/z

is a 100(1 — @)% confidence interval for o2, Recall this assumes that the X, are iid
Gaussian random variables.

w

. The fact that (n — 1)S? ~ Gamma((n — 1)/2,20%) can be used to create a likelihood
interval for o or o2.

'

. Chi-squared tests, intervals and likelihood intervals for variances depend on the normality
assumption, there is no approximate formula for quantiles as for the mean, derived from
the CLT.

. If Z is standard normal and X is and independent Chi-squared with df degrees of freedom
then follows what is called a Student’s T" distribution with df degrees of freedom.

z

/X/df

6. The Student’s T' density looks like a normal density with heavier tails (so it looks more
squashed down).

-

. By the previous item, if the X; are iid N(u, 02) then
X —pu

follows a Student’s T' distribution with (n — 1) degrees of freedom. Therefore if ,_1 , is
the at" quantile of the Student’s T distribution then

7=

> S
Xttt 11-a/2

is a 100(1 — )% confidence interval for .

o

. The Student’s T confidence interval assumes normality of the X;. However, the T distribu-
tion has quite heavy tails and so the interval is larger compared the normal distroibution
and works well in many situations.



9. For large sample sizes, the Student’s 7" and CLT based intervals are nearly the same
because the Student’s 7' quantiles become more and more like standard normal quantiles
as n increases.

10. For small sample sizes, it is difficult to diagnose normality/lack of normality. Regardless,
the robust T interval should be your default option.



