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1 Set theory

1. The symbol ⊂ means “is a subset of”, and ∈ means “is an element of”.

2. The sample space, Ω, is the space of all possible outcomes of an experiment.

3. An event, say A ⊂ Ω, is a subset of Ω.

4. The union of two events, A ∪B, is the collection of elements that are in A, B or both.

5. The intersection of two events, A ∩ B, is the collection of elements that are in both A and
B.

6. The complement of an event, say Ā or Ac, is all of the elements of Ω that are not in A.

7. The null or empty set is denoted ∅.

8. Two sets are disjoint or mutually exclusive if their intersection is empty, A ∩B = ∅.

9. DeMorgan’s laws state that (A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc.

2 Probability essentials

1. A probability measure, say P , is a function on the collection of events to [0, 1] so that the
following three properties hold:

a. P (Ω) = 1.

b. If A ⊂ Ω then P (A) ≥ 0.

c. If a sequence of events A1, A2 . . . , is disjoint then P (∪∞i=1Ai) =
∑∞

i=1 P (Ai).

2. P (Ac) = 1− P (A).

3. The odds of an event, A, are P (A)/(1− P (A)) = P (A)/P (Ac).

4. P (A ∪B) = P (A) + P (B)− P (A ∩B).

5. If A ⊂ B then P (A) ≤ P (B).
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6. Two events A and B are independent if P (A ∩ B) = P (A)P (B). A collection of events,
{Ai}ni=1, are independent if for any subset J ⊂ {1, 2, . . . n}, we have P (∩i∈JAi) =

∏
i∈J P (Ai).

If this holds only for all sets J with size |J | = 2 then we say the collection is pairwise inde-
pendent.

7. Pairwise independence of a collection of events does not imply mutually independence, though
the reverse is true.

8. Given that P (B) > 0, the conditional probability of A given that B has occurred is P (A|B) =
P (A ∩B)/P (B).

9. Two events A and B are independent if P (A|B) = P (A).

10. The law of total probability states that if Ai are a collection of mutually exclusive events
so that Ω = ∪ni=1Ai, then P (C) =

∑n
i=1 P (C|Ai)P (Ai) for any event C.

11. Bayes’s rule states that if Ai are a collection of mutually exclusive events so that Ω = ∪ni=1Ai,
then

P (Aj|C) =
P (C|Aj)P (Aj)∑n
i=1 P (C|Ai)P (Ai)

.

for any set C (with positive probability). Notice A and Ac are disjoint and A ∪ Ac = Ω so
that we have

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
.

12. The sensitivity of a diagnostic test is defined to be P (+|D) where + (−) is the event of a
positive (negative) test result and D is the event that a subject has the disease in question.
The specificity of a diagnostic test is P (−|Dc).

13. Bayes’s rule yields that

P (D|+) =
P (+|D)P (D)

P (+|D)P (D) + P (+|Dc)P (Dc)
,

and

P (Dc|−) =
P (−|Dc)P (Dc)

P (−|Dc)P (Dc) + P (−|D)P (D)
.

14. The diagnostic likelihood ratio of a positive test result is P (+|D)/P (+|Dc) = sensitivity/(1−
specificity). The likelihood ratio of a negative test result is P (−|D)/P (−|Dc) = 1-sensitivity/specificity.

15. The odds of disease after a positive test are related to the odds of disease before the test by
the relation

P (D|+)

P (Dc|+)
=

P (+|D)

P (+|Dc)

P (D)

P (Dc)
.

That is, the posterior odds equal the prior odds times the likelihood ratio. Correspondingly,

P (Dc|−)

P (D|−)
=
P (−|Dc)

P (−|D)

P (Dc)

P (D)
.
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3 Random variables

1. A random variable is a function from Ω to the real numbers. A random variable is a random
number that is the result of an experiment governed by a probability distribution.

2. A Bernoulli random variable is one that takes the value 1 with probability p and 0 with
probability (1− p). That is, P (X = 1) = p and P (X = 0) = 1− p.

3. A probability mass function (pmf) is a function that yields the various probabilities asso-
ciated with a random variable. For example, the probability mass function for a Bernoulli
random variable is f(x) = px(1− p)1−x for x = 0, 1 as this yields p when x = 1 and (1− p)
when x = 0.

4. The expected value or (population) mean of a discrete random variable, X, with pmf f(x)
is

µ = E[X] =
∑
x

xf(x).

The mean of a Bernoulli variable is then 1f(1) + 0f(0) = p.

5. The variance of any random variable, X, (discrete or continuous) is

σ2 = E
[
(X − µ)2

]
= E[X2]− E[X]2.

The latter formula being the most convenient for computation. The variance of a Bernoulli
random variable is p(1− p).

6. The (population) standard deviation, σ, is the square root of the variance.

7. Chebyshev’s inequality states that for any random variable P (|X − µ| ≥ Kσ) ≤ 1/K2.
This yields a way to interpret standard deviations.

8. A binomial random variable, X, is obtained as the sum of n Bernoulli random variables and
has pmf

P (X = k) =

(
n
k

)
pk(1− p)n−k.

Binomial random variables have expected value np and variance np(1− p).

4 Continuous random variables

1. Continuous random variables take values on the continuum of the real numbers or even
higher-dimensional real vector spaces.

2. A continuous random variable X has a probability density function (pdf) f if for all a < b,

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx.

To be a pdf, a function must be positive and integrate to 1. That is,
∫∞
−∞ f(x)dx = 1
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3. If h is a positive function such that
∫∞
−∞ h(x)dx ≤ ∞ then f(x) = h(x)/

∫∞
−∞ h(x)dx is a

valid density. Therefore, if we only know a density up to a constant of proportionality, then
we can figure out the exact density.

4. The expected value, or mean, of a continuous random variable, X, with pdf f , is

µ = E[X] =

∫ ∞
−∞

tf(t)dt.

5. The variance is σ2 = E[(X − µ)2] = E[X2]− E[X]2.

6. The distribution function, say F , corresponding to a random variable X with pdf, f , is

P (X ≤ x) = F (x) =

∫ x

−∞
f(t)dt.

(Note the common convention that X is used when describing an unobserved random variable
while x is for specific values.)

7. The pth quantile (for 0 ≤ p ≤ 1), say Xp, of a distribution function, say F , is the point so
that F (Xp) = p. For example, the .025th quantile of the standard normal distribution is -1.96.

5 Properties of expected values and variances

The following properties hold for all expected values (discrete or continuous)

1. Expected values are additive: E[X + Y ] = E[X] + E[Y ].

2. Multiplicative and additive constants can be pulled out of expected values E[cX] = cE[X]
and E[c+X] = c+ E[X].

3. For independent random variables, X and Y , E[XY ] = E[X]E[Y ].

4. In general, E[h(X)] 6= h(E[X]).

5. Variances are additive for sums of independent variables Var(X + Y ) = Var(X) + Var(Y ).

6. Multiplicative constants are squared when pulled out of variances Var(cX) = c2Var(X).

7. Additive constants do not change variances: Var(c+X) = Var(X).

6 The normal distribution

1. The normal or Gaussian density, often also called “bell curve”, is a very common den-
sity. It is specified by its mean, µ, and variance, σ2. The density is given by f(x) =
(2πσ2)−1/2 exp{−(x − µ)2/2σ2}. We write X ∼ N(µ, σ2) to denote that X is normally
distributed with mean µ and variance σ2.
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2. The standard normal density, labeled φ, corresponds to a normal density with mean µ = 0
and variance σ2 = 1.

φ(z) = (2π)−1/2 exp{−z2/2}.

The standard normal distribution function is usually labeled Φ.

3. If f is the pdf for a N(µ, σ2) random variable, X, then note that f(x) = φ{(x − µ)/σ}/σ.
Correspondingly, if F is the associated distribution function for X, then F (x) = Φ{(x−µ)/σ}.

4. If X is normally distributed with mean µ and variance σ2 then the random variable Z =
(X − µ)/σ is standard normally distributed. Taking a random variable subtracting its mean
and dividing by its standard deviation is called “standardizing” a random variable.

5. If Z is standard normal then X = µ+ Zσ is normal with mean µ and variance σ2.

6. Approximately 68%, 95% and 99% of the mass of any normal distribution lies within 1, 2 and
3 (respectively) standard deviations from the mean.

7. Henceforth, the quantity zα refers to the αth quantile of the standard normal distribution.
z.90, z.95, z.975 and z.99 are 1.28, 1.645, 1.96 and 2.32, respectively.

8. Sums and means of normal random variables are normal (regardless of whether or not they
are independent). You can use the rules for expectations and variances to figure out µ and σ.

9. The sample standard deviation of iid normal random variables, appropriated normalized, is a
Chi-squared random variable (see below).

7 Sample means and variances

Throughout this section let Xi be a collection of iid random variables with mean µ and variance
σ2.

1. We say random variables are iid if they are independent and identically distributed.

2. For random variables, Xi, the sample mean is X̄ =
∑n

i=1Xi/n.

3. E[X̄] = µ = E[Xi] (does not require the independence or constant variance).

4. If the Xi are iid with variance σ2 then Var(X̄) = Var(Xi)/n = σ2/n.

5. The sample variance is defined to be

S2 =

∑n
i=1(Xi − X̄)2

n− 1
.

6.
∑n

i=1(Xi − X̄)2 =
∑n

i=1X
2
i − nX̄2 is a shortcut formula for the numerator.

7. σ/
√
n is called the standard error of X̄. The estimated standard error of X̄ is S/

√
n. Do

not confuse dividing by this
√
n with dividing by n− 1 in the calculation of S2.

5



8. An estimator is unbiased if its expected value equals the parameter it is estimating.

9. E[S2] = σ2, which is why we divide by n− 1 instead of n. That is, S2 is unbiased. However,
dividing by n−1 rather than n does increase the variance of this estimator slightly, Var(S2) ≥
Var((n− 1)S2/n).

10. If the Xi are normally distributed with mean µ and variance σ2, then X̄ is normally distributed
with mean µ and variance σ2/n.

11. The Central Limit Theorem. If the Xi are iid with mean µ and (finite) variance σ2 then

Z =
X̄ − µ
σ/
√
n

will limit to a standard normal distribution. The result is true for small sample sizes, if the Xi

iid normally distributed.

12. If we replace σ with S; that is,

Z =
X̄ − µ
S/
√
n
,

then Z still limits to a standard normal. If the Xi are iid normally distributed, then Z follows
the Students t distribution for small n.

8 Confidence intervals for a mean using the CLT.

1. Using the CLT, we know that

P

(
−z1−α/2 ≤

X̄ − µ
S/
√
n
≤ z1−α/2

)
≈ 1− α

for large n. Solving the inequalities for µ, we calculated that in repeated sampling, the interval

X̄ ± z1−α/2
S√
n

will contain µ approximately 100(1− α)% of the time.

2. Prior to conducting a study, you can fix the margin of error (half width), say δ, of the interval
by setting n = (Z1−α/2σ/δ)

2. Round up. Requires an estimate of σ.

9 Confidence intervals for a variance and t confidence in-
tervals

1. If Xi are iid normal random variables with mean µ and variance σ2 then (n−1)S2

σ2 follows what
is called a Chi-squared distribution with n− 1 degrees of freedom.
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2. Using the previous item, we know that

P

(
χ2
n−1,α/2 ≤

(n− 1)S2

σ2
≤ χ2

n−1,1−α/2

)
= 1− α,

where χ2
n−1,α denotes the αth quantile of the Chi-squared distribution. Solving these inequal-

ities for σ2 yields [
(n− 1)S2

χ2
n−1,1−α/2

,
(n− 1)S2

χ2
n−1,α/2

]
is a 100(1− α)% confidence interval for σ2. Recall this assumes that the Xi are iid Gaussian
random variables.

3. Chi-squared confidence intervals depend heavily on the normality assumption.

4. If Z is standard normal and X is and independent Chi-squared with df degrees of freedom
then Z√

X/df
follows what is called a Student’s t distribution with df degrees of freedom.

5. The Student’s t density looks like a normal density with heavier tails (so it looks more squashed
down).

6. By the previous item, if the Xi are iid N(µ, σ2) then

Z =
X̄ − µ
S/
√
n

follows a Student’s t distribution with (n − 1) degrees of freedom. Therefore if tn−1,α is the
αth quantile of the Student’s t distribution then

X̄ ± tn−1,1−α/2
S√
n

is a 100(1− α)% confidence interval for µ.

7. The Student’s t confidence interval assumes normality of the Xi. However, the t distribution
has quite heavy tails and so the interval is conservative and works well in many situations.

8. For large sample sizes, the Student’s t and CLT based intervals are nearly the same because
the Student’s t quantiles become more and more like standard normal quantiles as n increases.

9. For small sample sizes, it is difficult to diagnose normality/lack of normality. Regardless, the
robust t interval should be your default option.

10 Binomial confidence intervals

1. Binomial distributions are used to model proportions. If X ∼ Binomial(n, p) then p̂ = X/n
is a sample proportion.
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2. p̂ has the following properties.

a. It is a sample mean of Bernoulli random variables.

b. It has expected value p.

c. It has variance p(1 − p)/n. Note that the largest value that p(1 − p) can take is 1/4 at
p = 1/2.

d. Z = p̂−p√
p(1−p)/n

follows a standard normal distribution for large n by the CLT.

3. The Wald confidence interval for a binomial proportion is

p̂± z1−α/2
√
p̂(1− p̂)/n.

11 The likelihood for a binomial parameter p

1. The likelihood for a parameter is the probability density of a given outcome viewed as a
function of the parameter.

2. The binomial likelihood for observed data x is proportional to px(1− p)n−x.

3. The principle of maximum likelihood states that a good estimate of the parameter is the
one that makes the data that was actually observed most probable. That is, the principle of
maximum likelihood says that a good estimate of the parameter is the one that maximizes the
likelihood.

a. The maximum likelihood estimate for p is p̂ = X/n.

b. The maximum likelihood estimate for µ for iid N(µ, σ2) data is X̄. The maximum likelihood
estimate for σ2 is (n− 1)S2/n (the biased sample variance).

4. Likelihood ratios represent the relative evidence comparing one hypothesized value of the
parameter to another.

5. Likelihoods are usually plotted so that the maximum value (the value at the ML estimate) is
1. Where reference lines at 1/8 and 1/32 intersect the likelihood depict likelihood intervals.
Points lying within the 1/8 reference line, for example, are such that no other parameter value
is more than 8 times better supported given the data.

12 Group comparisons

1. For group comparisons, make sure to differentiate whether or not the observations are paired
(or matched) versus independent.

2. For paired comparisons for continuous data, one strategy is to calculate the differences and
use the methods for testing and performing hypotheses regarding a single mean. The resulting
tests and confidence intervals are called paired Student’s t tests and intervals respectively.
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3. For independent groups of iid variables, say Xi and Yi, with a constant variance σ2 across
groups

Z =
X̄ − Ȳ − (µx − µy)

Sp
√

1
nx

+ 1
ny

limits to a standard normal random variable as both nx and ny get large. Here

S2
p =

(nx − 1)S2
x + (ny − 1)S2

y

nx + ny − 2

is the pooled estimate of the variance. The quantities X̄, Sx, nx are the sample mean, sample
standard deviation and sample size for the Xi and Ȳ , Sy and ny are defined analogously.

4. If the Xi and Yi happen to be normal, then Z follows the Student’s t distribution with
nx + ny − 2 degrees of freedom.

5. Therefore a (1− α)× 100% confidence interval for µy − µx is

Ȳ − X̄ ± tnx+ny−2,1−α/2Sp

(
1

nx
+

1

ny

)1/2

6. Note that under unequal variances

Ȳ − X̄ ∼ N

(
µy − µx,

σ2
x

nx
+
σ2
y

ny

)
7. The statistic

Ȳ − X̄ − (µy − µx)(
S2
x

nx
+

S2
y

ny

)1/2
approximately follows Gosset’s t distribution with degrees of freedom equal to(

S2
x/nx + S2

y/ny
)2(

S2
x

nx

)2
/(nx − 1) +

(
S2
y

ny

)2
/(ny − 1)

13 Comparing two binomials

(a) Let X ∼ Binomial(n1, p1) and p̂1 = X/n1

(b) Let Y ∼ Binomial(n2, p2) and p̂2 = Y/n2

(c) We also use the following notation:

n11 = X n12 = n1 −X n1 = n1

n21 = Y n22 = n2 − Y n2 = n2

n+ n−
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(d) Consider testing H0 : p1 = p2 versus H1 : p1 6= p2, H2 : p1 > p2, H3 : p1 < p2

(e) A useful statistic compares the differences in proportions

TS =
p̂1 − p̂2√

p̂(1− p̂)( 1
n1

+ 1
n2

)

where p̂ = X+Y
n1+n2

is the estimate of the common proportion. This statistic is approxi-
mately normally distributed for large n1 and n2.

(f) To estimate p1−p2 we can use p̂1−p̂2, which has an estimated standard error
√

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

,

and construct a Wald confidence interval:

p̂1 − p̂2 ± z1−α/2

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

.

(g) The relative risk is defined as p1/p2 with estimate p̂1/p̂2.

(h) The standard error for the log relative risk is

SElog R̂R =

√
1− p1
p1n1

+
1− p2
p2n2

a. log R̂R−logRR
ŜElog R̂R

is normally distributed for large n1 and n2

b. For hypothesis testing, use the null estimate of p

c. For intervals, use p̂1 and p̂2 in ŜElog R̂R. Exponentiate the interval to get one for the
RR

(i) The odds ratio is defined as OR = p1/(1−p1)
p2/(1−p2)

(j) An estimate of the odds ratio is ÔR = p̂1/(1−p̂1)
p̂2/(1−p̂2) = n11n22

n12n21

(k) A standard error for the odds ratio is ŜElog ÔR =
√

1
n11

+ 1
n12

+ 1
n21

+ 1
n22

(l) For large sample sizes log ÔR−logOR
ŜElog ÔR

follows a standard normal distribution. You can use

this to get a Wald confidence interval and perform hypothesis test for the OR.

(m) Exponentiate to get a CI for the odds ratio.

(n) The odds ratio is invariant to transposing rows and columns

(o) Taking logs for the RR and OR is done b/c it their finite sample distributions are often
quite skewed and convergence to normality is faster on the log scale.

14 The delta method

(a) The delta method is a useful tool for obtaining asymptotic standard errors.
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(b) The delta method states the following. If

θ̂ − θ
ŜE θ̂

→ N(0, 1)

then
f(θ̂)− f(θ)

f ′(θ̂)ŜE θ̂

→ N(0, 1).

(c) The delta method is motivated by noting that when θ̂ is close to θ then

f(θ̂)− f(θ)

θ̂ − θ
≈ f ′(θ̂)

so that
f(θ̂)− f(θ)

f ′(θ̂)ŜE θ̂

≈ θ̂ − θ
ŜE θ̂

.

(d) Therefore the asymptotic standard error for f(θ̂) is f ′(θ̂)ŜE θ̂.

15 Chi squared testing for contingency tables

(a) Use the notation from Section 13.

(b) The chi-squared statistic is written as∑ (O − E)2

E

the sum is taken over all four cells. The expected cell counts are calculated under the
null hypothesis.

(c) An easy computational form for this statistic is

n(n11n22 − n12n21)

n+n−n1n2

.

(d) We reject H0 : p1 = p2 if the statistic is large. It is a two sided test. Compare to a .95th
quantile of the Chi-squared distribution with 1 degree of freedom.

(e) The chi-squared statistic is the square of the difference in proportions statistic with the
common p in the denominator.

(f) The chi-squared statistic is invariant to transposing the rows and columns.
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16 Fisher’s exact test

(a) Use the notation from Section 13.

(b) Fisher’s exact test is “exact” because it guarantees the α rate, regardless of the sample
size

(c) Under the null hypothesis, the distribution of X | X+Y is the so called hypegeometric
distribution. The PMF for the hypegeometric distribution is

P (X = x | X + Y = z) =

(
n1

x

)(
n2

z − x

)
(
n1 + n2

z

) .

The possibly values for x are max(0, z + n1 − n) ≤ x ≤ min(z, n1).

(d) This distribution can be simulated by taking n+ red balls and n− white balls and randomly
allocating to two bins that can hold n1 and n2 balls respectively.

(e) For a one sided hypothesis, you can perform Fisher’s exact test by calculating the hy-
pergeometric probabilities for all tables that are as or more supportive of the alternative
hypothesis. Remember to constrain the margins. To obtain the two sided P-value, double
the smaller of the one sided P-values.

17 Chi-squared testing for binomial observations

(a) The chi-squared test can be used to test p1 = p2 = . . . = pk for k binomial observations,
Xi ∼ Binomial(ni, pi).

(b) The test statistic is
∑ (O−E)2

E
where O are the observed counts (successes and failures)

and E are the estimated expected counts under the null hypothesis. This statistic is a
chi-square with k − 1 degrees of freedom.

(c) A followup test would compare the proportions individually, two at a time.

(d) The test can be generalized to multicategory settings where we would want to test
whether or not the distribution of the counts in each row are the same. This test would
have (rows− 1)(cols− 1) degrees of freedom.

(e) For multinomial sampling (only the overall sample size is constrained) a test of indepen-
dence of the row and column classifications can be done. If nij are the observed counts
in cell i, j, then the expected counts are ninj+/n. (Here ni refers to the ith row total
and nj+ refers to the jth column total). The resulting statistic has degrees of freedom
(rows− 1)(cols− 1).

(f) The test statistic for independence and the test for equal distributions in each row are
mathematically the same and follow a chi-squared distribution with (rows−1)(cols−1)
degrees of freedom. The only difference is in the intepretation of the test.
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(g) Exact tests of independence (generalizations of Fisher’s exact test) can be performed
using Monte Carlo simulation.

(h) It is also possible to test whether or not a series of counts follow a specified distribution.
That is H0 : p1 = p01, p2 = p02, . . . , pk = p0k where p0i are specified. The expected
count for cell i is n ∗ p0i. The resulting statistic has k − 1 degrees of freedom.

18 Multiple comparisons

(a) When conducting k hypothesis tests, the familywise error rate refers to the probability
of falsely rejecting the null hypothesis in any of the k tests.

(b) Bonferroni’s inequality implies that the familywise error rate is no larger than kα where
α is the Type I error rate (applied to each test individually). Therefore a Bonferroni
adjustment uses the Type I error rate α∗ = α/k for each test. Under this adjustment
the familywise error rate is no larger than α.

(c) If there are a large number tests whos outcomes are independent (which is rarely the
case), then the Bonferroni bound on the family wise error rate is nearly attained.

(d) The false discovery rate is defined as the proportion of tests that are falsely declared
significant.

(e) The Benjamini and Hochberg procedure to control the FDR follows as

i. Order your p-values so that p1 < . . . < pk

ii. Define qi = kpi/i

iii. Define Fi = min(qi, . . . , qk)

iv. Reject H0 for all i so that Fi is less than the desired FDR. (Because the Fi are
increasing, one need only find the largest i so that Fi <FDR).

(f) Both FDRs and Bonferroni corrections are useful to protect against errors when invoking
a decision rule which combines individual tests.
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