Math4310/Biol6317 Midterm Review

October 15, 2011

1 Set theory

- The symbol ⊂ means "is a subset of", and ∈ means "is an element of".
- 2. The sample space, Ω , is the space of all possible outcomes of an experiment.
- An event, say A ⊂ Ω, is a subset of Ω.
- 4. The **union** of two events, $A \cup B$, is the collection of elements that are in A, B or both.
- 5. The **intersection** of two events, $A \cap B$, is the collection of elements that are in both A and B.
- 6. The **complement** of an event, say \bar{A} or A^c , is all of the elements of Ω that are not in A.
- 7. The **null** or **empty** set is denoted \emptyset .
- 8. Two sets are **disjoint** or **mutually exclusive** if their intersection is empty, $A \cap B = \emptyset$.
- 9. **DeMorgan's laws** state that $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$.

2 Probability essentials

- 1. A **probability measure**, say P, is a function on the collection of events to [0,1] so that the following three properties hold:
 - a. $P(\Omega) = 1$.
 - b. If $A \subset \Omega$ then $P(A) \geq 0$.
 - c. If a sequence of events $A_1,A_2\ldots$, is disjoint then $P(\cup_{i=1}^\infty A_i)=\sum_{i=1}^\infty P(A_i).$
- 2. $P(A^c) = 1 P(A)$.
- 3. The **odds** of an event, A, are $P(A)/(1-P(A))=P(A)/P(A^c)$.
- 4. $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- 5. If $A \subset B$ then $P(A) \leq P(B)$.

- 6. Two events A and B are **independent** if $P(A \cap B) = P(A)P(B)$. A collection of events, $\{A_i\}_{i=1}^n$ are **mutually independent** if for any subset $J \subset \{1,2,\ldots n\}$, we have $P(\cap_{i \in J} A_i) = \prod_{i \in J} P(A_i)$. If this holds for all sets J with size |J| = 2 then we say the collection is **pairwise independent**.
- Pairwise independence of a collection of events does not imply mutually independence, though the reverse is true
- 8. Given that P(B)>0, the conditional probability of A given that B has occurred is $P(A|B)=P(A\cap B)/P(B)$.
- 9. Two events A and B are **independent** if P(A|B) = P(A).
- 10. The law of total probability states that if A_i are a collection of mutually exclusive events so that $\Omega = \bigcup_{i=1}^n A_i$, then $P(C) = \sum_{i=1}^n P(C|A_i)P(A_i)$ for any event C.
- 11. Bayes's rule states that if A_i are a collection of mutually exclusive events so that $\Omega = \cup_{i=1}^n A_i$, then

$$P(A_j|C) = \frac{P(C|A_j)P(A_j)}{\sum_{i=1}^{n} P(C|A_i)P(A_i)}.$$

for any set C (with positive probability). Notice A and A^c are disjoint and $A \cup A^c = \Omega$ so that we have

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^{c})P(A^{c})}.$$

- 12. The sensitivity of a diagnostic test is defined to be P(+|D) where + (-) is the event of a positive (negative) test result and D is the event that a subject has the disease in question. The specificity of a diagnostic test is P(-|D^c).
- Bayes's rule yields that

$$P(D|+) = \frac{P(+|D)P(D)}{P(+|D)P(D) + P(+|D^c)P(D^c)},$$

and

$$P(D^c|-) = \frac{P(-|D^c)P(D^c)}{P(-|D^c)P(D^c) + P(-|D)P(D)}.$$

- 14. The diagnostic likelihood ratio of a positive test result is $P(+|D)/P(+|D^c) = \text{sensitivity}/(1-\text{specificity})$. The likelihood ratio of a negative test result is $P(-|D)/P(-|D^c) = 1$ -sensitivity/specificity.
- 15. The odds of disease after a positive test are related to the odds of disease before the test by the relation

$$\frac{P(D|+)}{P(D^c|+)} = \frac{P(+|D)}{P(+|D^c)} \frac{P(D)}{P(D^c)}.$$

That is, the posterior odds equal the prior odds times the likelihood ratio. Correspondingly,

$$\frac{P(D^c|-)}{P(D|-)} = \frac{P(-|D^c)}{P(-|D)} \frac{P(D^c)}{P(D)}.$$

3 Random variables

- A random variable is a function from Ω to the real numbers. A random variable is a random number that is the result of an experiment governed by a probability distribution.
- 2. A **Bernoulli** random variable is one that takes the value 1 with probability p and 0 with probability (1-p). That is, P(X=1)=p and P(X=0)=1-p.
- 3. A **probability mass function** (pmf) is a function that yields the various probabilities associated with a random variable. For example, the probability mass function for a Bernoulli random variable is $f(x) = p^x(1-p)^{1-x}$ for x = 0, 1 as this yields p when x = 1 and (1-p) when x = 0.
- 4. The **expected value** or (population) **mean** of a discrete random variable, X, with pmf f(x) is

$$\mu = E[X] = \sum x f(x).$$

The mean of a Bernoulli variable is then 1f(1) + 0f(0) = p.

5. The variance of any random variable, X, (discrete or continuous) is

$$\sigma^2 = E[(X - \mu)^2] = E[X^2] - E[X]^2.$$

The latter formula being the most convenient for computation. The variance of a Bernoulli random variable is p(1-p).

- 6. The (population) standard deviation, σ , is the square root of the variance.
- 7. Chebyshev's inequality states that for any random variable $P(|X \mu| \ge K\sigma) \le 1/K^2$. This yields a way to interpret standard deviations.
- 8. A **binomial** random variable, X, is obtained as the sum of n Bernoulli random variables and has pmf

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}.$$

Binomial random variables have expected value np and variance np(1-p).

4 Continuous random variables

- Continuous random variables take values on the continuum of the real numbers or even higher-dimensional real vector spaces.
- 2. A continuous random variable X has a **probability density function** (pdf) f if for all a < b,

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx.$$

To be a pdf, a function must be positive and integrate to 1. That is, $\int_{-\infty}^{\infty} f(x)dx = 1$

- 3. If h is a positive function such that $\int_{-\infty}^{\infty} h(x) dx \le \infty$ then $f(x) = h(x)/\int_{-\infty}^{\infty} h(x) dx$ is a valid density. Therefore, if we only know a density up to a constant of proportionality, then we can figure out the exact density.
- 4. The expected value, or mean, of a continuous random variable, X, with pdf f, is

$$\mu = E[X] = \int_{-\infty}^{\infty} tf(t)dt.$$

- 5. The variance is $\sigma^2 = E[(X \mu)^2] = E[X^2] E[X]^2$.
- 6. The distribution function, say F, corresponding to a random variable X with pdf, f, is

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(t)dt.$$

(Note the common convention that X is used when describing an unobserved random variable while x is for specific values.)

7. The p^{th} quantile (for $0 \le p \le 1$), say X_p , of a distribution function, say F, is the point so that $F(X_p) = p$. For example, the $.025^{th}$ quantile of the standard normal distribution is -1.96.

5 Properties of expected values and variances

The following properties hold for all expected values (discrete or continuous)

- 1. Expected values are additive: E[X + Y] = E[X] + E[Y].
- 2. Multiplicative and additive constants can be pulled out of expected values E[cX]=cE[X] and E[c+X]=c+E[X].
- 3. For independent random variables, X and Y, E[XY] = E[X]E[Y].
- 4. In general, $E[h(X)] \neq h(E[X])$.
- 5. Variances are additive for sums of independent variables Var(X + Y) = Var(X) + Var(Y).
- 6. Multiplicative constants are squared when pulled out of variances $Var(cX) = c^2 Var(X)$.
- 7. Additive constants do not change variances: Var(c + X) = Var(X).

6 The normal distribution

1. The **normal** or **Gaussian** density, often also called "bell curve", is a very common density. It is specified by its mean, μ , and variance, σ^2 . The density is given by $f(x)=(2\pi\sigma^2)^{-1/2}\exp\{-(x-\mu)^2/\sigma^2\}$. We write $X\sim \mathrm{N}(\mu,\sigma^2)$ to denote that X is normally distributed with mean μ and variance σ^2 .

- 3. If h is a positive function such that $\int_{-\infty}^{\infty} h(x) dx \le \infty$ then $f(x) = h(x)/\int_{-\infty}^{\infty} h(x) dx$ is a valid density. Therefore, if we only know a density up to a constant of proportionality, then we can figure out the exact density.
- 4. The expected value, or mean, of a continuous random variable, X, with pdf f, is

$$\mu = E[X] = \int_{-\infty}^{\infty} tf(t)dt.$$

- 5. The variance is $\sigma^2 = E[(X \mu)^2] = E[X^2] E[X]^2$.
- 6. The distribution function, say F, corresponding to a random variable X with pdf, f, is

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(t)dt.$$

(Note the common convention that X is used when describing an unobserved random variable while x is for specific values.)

7. The p^{th} quantile (for $0 \le p \le 1$), say X_p , of a distribution function, say F, is the point so that $F(X_p) = p$. For example, the $.025^{th}$ quantile of the standard normal distribution is -1.96.

5 Properties of expected values and variances

The following properties hold for all expected values (discrete or continuous)

- 1. Expected values are additive: E[X + Y] = E[X] + E[Y].
- 2. Multiplicative and additive constants can be pulled out of expected values E[cX]=cE[X] and E[c+X]=c+E[X].
- 3. For independent random variables, X and Y, E[XY] = E[X]E[Y].
- 4. In general, $E[h(X)] \neq h(E[X])$.
- 5. Variances are additive for sums of independent variables Var(X + Y) = Var(X) + Var(Y).
- 6. Multiplicative constants are squared when pulled out of variances $Var(cX) = c^2 Var(X)$.
- 7. Additive constants do not change variances: Var(c + X) = Var(X).

6 The normal distribution

1. The **normal** or **Gaussian** density, often also called "bell curve", is a very common density. It is specified by its mean, μ , and variance, σ^2 . The density is given by $f(x)=(2\pi\sigma^2)^{-1/2}\exp\{-(x-\mu)^2/\sigma^2\}$. We write $X\sim \mathrm{N}(\mu,\sigma^2)$ to denote that X is normally distributed with mean μ and variance σ^2 .

2. The **standard normal** density, labeled ϕ , corresponds to a normal density with mean $\mu=0$ and variance $\sigma^2=1$.

$$\phi(z) = (2\pi)^{-1/2} \exp\{-z^2/2\}.$$

The standard normal distribution function is usually labeled Φ .

- 3. If f is the pdf for a $N(\mu, \sigma^2)$ random variable, X, then note that $f(x) = \phi\{(x \mu)/\sigma\}/\sigma$. Correspondingly, if F is the associated distribution function for X, then $F(x) = \Phi\{(x \mu)/\sigma\}$.
- 4. If X is normally distributed with mean μ and variance σ^2 then the random variable $Z=(X-\mu)/\sigma$ is standard normally distributed. Taking a random variable subtracting its mean and dividing by its standard deviation is called "standardizing" a random variable.
- 5. If Z is standard normal then $X = \mu + Z\sigma$ is normal with mean μ and variance σ^2 .
- Approximately 68%, 95% and 99% of the mass of any normal distribution lies within 1, 2 and 3 (respectively) standard deviations from the mean.
- 7. Henceforth, the quantity z_{α} refers to the α^{th} quantile of the standard normal distribution. z_{90}, z_{95}, z_{975} and z_{99} are 1.28, 1.645, 1.96 and 2.32, respectively.
- 8. Sums and means of normal random variables are normal (regardless of whether or not they are independent). You can use the rules for expectations and variances to figure out μ and σ .
- The sample standard deviation of iid normal random variables, appropriated normalized, is a Chi-squared random variable (see below).

7 Sample means and variances

Throughout this section let X_i be a collection of iid random variables with mean μ and variance σ^2 .

- 1. We say random variables are iid if they are independent and identically distributed.
- 2. For random variables, X_i , the sample mean is $\bar{X} = \sum_{i=1}^n X_i/n$.
- 3. $E[\bar{X}] = \mu = E[X_i]$ (does not require the independence or constant variance).
- 4. If the X_i are iid with variance σ^2 then $\mathrm{Var}(\bar{X}) = \mathrm{Var}(X_i)/n = \sigma^2/n$.
- 5. The sample variance is defined to be

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}.$$

- 6. $\sum_{i=1}^{n} (X_i \bar{X})^2 = \sum_{i=1}^{n} X_i^2 n\bar{X}^2$ is a shortcut formula for the numerator.
- 7. σ/\sqrt{n} is called the **standard error** of \bar{X} . The estimated standard error of \bar{X} is S/\sqrt{n} . Do not confuse dividing by this \sqrt{n} with dividing by n-1 in the calculation of S^2 .

- 8. An estimator is unbiased if its expected value equals the parameter it is estimating.
- 9. $E[S^2] = \sigma^2$, which is why we divide by n-1 instead of n. That is, S^2 is unbiased. However, dividing by n-1 rather than n does increase the variance of this estimator slightly, $\mathrm{Var}(S^2) \geq \mathrm{Var}((n-1)S^2/n)$.
- 10. If the X_i are normally distributed with mean μ and variance σ^2 , then \bar{X} is normally distributed with mean μ and variance σ^2/n .
- 11. The **Central Limit Theorem**. If the X_i are iid with mean μ and (finite) variance σ^2 then

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

will limit to a standard normal distribution. The result is true for small sample sizes, if the X_i iid normally distributed.

12. If we replace σ with S; that is,

$$Z = \frac{\bar{X} - \mu}{S/\sqrt{n}},$$

then Z still limits to a standard normal. If the X_i are iid normally distributed, then Z follows the Students t distribution for small n.

8 Confidence intervals for a mean using the CLT.

1. Using the CLT, we know that

$$P\left(-z_{1-\alpha/2} \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le z_{1-\alpha/2}\right) \approx 1 - \alpha$$

for large n. Solving the inequalities for μ , we calculated that in repeated sampling, the interval

$$\bar{X} \pm z_{1-\alpha/2} \frac{S}{\sqrt{n}}$$

will contain μ approximately $100(1-\alpha)\%$ of the time.

2. Prior to conducting a study, you can fix the **margin of error** (half width), say δ , of the interval by setting $n=(Z_{1-\alpha/2}\sigma/\delta)^2$. Round up. Requires an estimate of σ .

9 Confidence intervals for a variance and t confidence intervals

1. If X_i are iid normal random variables with mean μ and variance σ^2 then $\frac{(n-1)S^2}{\sigma^2}$ follows what is called a Chi-squared distribution with n-1 degrees of freedom.

2. Using the previous item, we know that

$$P\left(\chi_{n-1,\alpha/2}^2 \leq \frac{(n-1)S^2}{\sigma^2} \leq \chi_{n-1,1-\alpha/2}^2\right) = 1-\alpha,$$

where $\chi^2_{n-1,\alpha}$ denotes the α^{th} quantile of the Chi-squared distribution. Solving these inequalities for σ^2 yields

$$\left[\frac{(n-1)S^2}{\chi^2_{n-1,1-\alpha/2}}, \frac{(n-1)S^2}{\chi^2_{n-1,\alpha/2}}\right]$$

is a $100(1-\alpha)\%$ confidence interval for σ^2 . Recall this assumes that the X_i are iid Gaussian random variables.

- 3. Chi-squared confidence intervals depend heavily on the normality assumption.
- 4. If Z is standard normal and X is and independent Chi-squared with df degrees of freedom then $\frac{Z}{\sqrt{X/df}}$ follows what is called a Student's t distribution with df degrees of freedom.
- The Student's t density looks like a normal density with heavier tails (so it looks more squashed down).
- 6. By the previous item, if the X_i are iid $N(\mu, \sigma^2)$ then

$$Z = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

follows a Student's t distribution with (n-1) degrees of freedom. Therefore if $t_{n-1,\alpha}$ is the α^{th} quantile of the Student's t distribution then

$$\bar{X} \pm t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}$$

is a $100(1-\alpha)\%$ confidence interval for μ .

- The Student's t confidence interval assumes normality of the X_i. However, the t distribution
 has quite heavy tails and so the interval is conservative and works well in many situations.
- 8. For large sample sizes, the Student's t and CLT based intervals are nearly the same because the Student's t quantiles become more and more like standard normal quantiles as n increases.
- For small sample sizes, it is difficult to diagnose normality/lack of normality. Regardless, the robust t interval should be your default option.

10 Binomial confidence intervals

1. Binomial distributions are used to model proportions. If $X \sim \mathrm{Binomial}(n,p)$ then $\hat{p} = X/n$ is a sample proportion.

- 2. \hat{p} has the following properties.
 - a. It is a sample mean of Bernoulli random variables.
 - b. It has expected value p.
 - c. It has variance p(1-p)/n. Note that the largest value that p(1-p) can take is 1/4 at p=1/2.
 - d. $Z=rac{\hat{p}-p}{\sqrt{p(1-p)/n}}$ follows a standard normal distribution for large n by the CLT.
- 3. The Wald confidence interval for a binomial proportion is

$$\hat{p} \pm z_{1-\alpha/2} \sqrt{\hat{p}(1-\hat{p})/n}$$
.

11 The likelihood for a binomial parameter p

- The likelihood for a parameter is the probability density of a given outcome viewed as a function of the parameter.
- 2. The binomial likelihood for observed data x is proportional to $p^x(1-p)^{n-x}$.
- The principle of maximum likelihood states that a good estimate of the parameter is the one that makes the data that was actually observed most probable. That is, the principle of maximum likelihood says that a good estimate of the parameter is the one that maximizes the likelihood.
 - a. The maximum likelihood estimate for p is $\hat{p} = X/n$.
 - b. The maximum likelihood estimate for μ for iid $N(\mu, \sigma^2)$ data is \bar{X} . The maximum likelihood estimate for σ^2 is $(n-1)S^2/n$ (the biased sample variance).
- Likelihood ratios represent the relative evidence comparing one hypothesized value of the parameter to another.
- 5. Likelihoods are usually plotted so that the maximum value (the value at the ML estimate) is 1. Where reference lines at 1/8 and 1/32 intersect the likelihood depict likelihood intervals. Points lying within the 1/8 reference line, for example, are such that no other parameter value is more than 8 times better supported given the data.

12 Group comparisons

- For group comparisons, make sure to differentiate whether or not the observations are paired (or matched) versus independent.
- For paired comparisons for continuous data, one strategy is to calculate the differences and use the methods for testing and performing hypotheses regarding a single mean. The resulting tests and confidence intervals are called paired Student's t tests and intervals respectively.

3. For independent groups of iid variables, say X_i and Y_i , with a constant variance σ^2 across groups

$$Z = \frac{\bar{X} - \bar{Y} - (\mu_x - \mu_y)}{S_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}}$$

limits to a standard normal random variable as both n_x and n_y get large. Here

$$S_p^2 = \frac{(n_x - 1)S_x^2 + (n_y - 1)S_y^2}{n_x + n_y - 2}$$

is the **pooled estimate** of the variance. The quantities \bar{X} , S_x , n_x are the sample mean, sample standard deviation and sample size for the X_i and \bar{Y} , S_y and n_y are defined analogously.

- 4. If the X_i and Y_i happen to be normal, then Z follows the Student's t distribution with n_x+n_y-2 degrees of freedom.
- 5. Therefore a $(1-\alpha) \times 100\%$ confidence interval for $\mu_y \mu_x$ is

$$\bar{Y} - \bar{X} \pm t_{n_x + n_y - 2, 1 - \alpha/2} S_p \left(\frac{1}{n_x} + \frac{1}{n_y} \right)^{1/2}$$

6. Note that under unequal variances

$$\bar{Y} - \bar{X} \sim N\left(\mu_y - \mu_x, \frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}\right)$$

7. The statistic

$$\frac{\bar{Y} - \bar{X} - \left(\mu_y - \mu_x\right)}{\left(\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}\right)^{1/2}}$$

approximately follows Gosset's t distribution with degrees of freedom equal to

$$\frac{\left(S_x^2/n_x + S_y^2/n_y\right)^2}{\left(\frac{S_x^2}{n_x}\right)^2/(n_x - 1) + \left(\frac{S_y^2}{n_y}\right)^2/(n_y - 1)}$$

13 Comparing two binomials

- (a) Let $X \sim \operatorname{Binomial}(n_1, p_1)$ and $\hat{p}_1 = X/n_1$
- (b) Let $Y \sim \text{Binomial}(n_2, p_2)$ and $\hat{p}_2 = Y/n_2$
- (c) To estimate p_1-p_2 we can use $\hat{p}_1-\hat{p}_2$, which has an estimated standard error $\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1}+\frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$, and construct a Wald confidence interval:

$$\hat{p}_1 - \hat{p}_2 \pm z_{1-\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$