Math4310/Biol6317 Midterm Review

October 15, 2011

1 Set theory

1. The symbol C means "is a subset of”, and € means “is an element of".
2. The sample space, (2, is the space of all possible outcomes of an experiment.
3. An event, say A C (), is a subset of (2.

4. The union of two events, AU B, is the collection of elements that are in A, B or both.

5. The intersection of two events, AN B, is the collection of elements that are in both A and
B.

6. The complement of an event, say A or A¢, is all of the elements of () that are not in A.

7. The null or empty set is denoted (.

8. Two sets are disjoint or mutually exclusive if their intersection is empty, AN B = (.

9. DeMorgan'’s laws state that (AU B)° = A°N B and (AN B)° = AU B“.

2 Probability essentials

1. A probability measure, say P, is a function on the collection of events to [0, 1] so that the
following three properties hold:

a. P(Q) = 1.
b. If A C Q then P(A) > 0.
c. If a sequence of events Ay, Ay ..., is disjoint then P(U2 A;) = >, P(A;).

2. P(A) =1 P(A).
3. The odds of an event, A, are P(A)/(1 — P(A)) = P(A)/P(A°).
4. P(AUB) = P(A) + P(B) — P(AN B).

5. If A C B then P(A) < P(B).
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. Two events A and B are independent if P(AN B) = P(A)P(B). A collection of events,

{A;},, are mutually independent if for any subset J C {1,2,...n}, we have P(Nje;4;) =
[Lics P(A:). If this holds for all sets .J with size |.J| = 2 then we say the collection is pairwise
independent.

. Pairwise independence of a collection of events does not imply mutually independence, though

the reverse is true.

. Given that P(B) > 0, the conditional probability of A given that B has occurred is P(A|B) =

P(ANB)/P(B).

. Two events A and B are independent if P(A|B) = P(A).

The law of total probability states that if A; are a collection of mutually exclusive events
so that Q = UL, A;, then P(C') = 37, P(C|A;) P(A;) for any event C.

Bayes's rule states that if A; are a collection of mutually exclusive events so that ) = U A;,
then

P(CIA)P(4)
S, P(CIA)P(A)’

for any set C' (with positive probability). Notice A and A¢ are disjoint and A U A° = () so
that we have

P(4;

0)=

P(B|A)P(A)
(BIA)P(A) + P(BJA%)P(A?)’

PAIB) = 5

The sensitivity of a diagnostic test is defined to be P(+|D) where + (—) is the event of a
positive (negative) test result and D is the event that a subject has the disease in question.
The specificity of a diagnostic test is P(—|D¢).

Bayes's rule yields that

B P(+|D)P(D)

PO = 5ED)P(D) + PL+DIP(D7)
and

o P(-|D)P(D)

= P(=[D°)P(D?) + P(=[D)P(D)’

The diagnostic likelihood ratio of a positive test result is P(+|D)/P(+|D) = sensitivity/(1—

specificity). The likelihood ratio of a negative test result is P(—|D)/P(—|D¢) = 1-sensitivity/specificity.

The odds of disease after a positive test are related to the odds of disease before the test by

the relation
P(D|+) _ P(+|D) P(D)

P(D+) — P(+|D<) P(D*)’

That is, the posterior odds equal the prior odds times the likelihood ratio. Correspondingly,
(D) _ P(=1D) PDY).
P(D|-)  P(=|D) P(D)




3 Random variables

1. A random variable is a function from 2 to the real numbers. A random variable is a random
number that is the result of an experiment governed by a probability distribution.

N

. A Bernoulli random variable is one that takes the value 1 with probability p and 0 with
probability (1 —p). Thatis, P(X =1)=pand P(X =0)=1—p.

w

. A probability mass function (pmf) is a function that yields the various probabilities asso-
ciated with a random variable. For example, the probability mass function for a Bernoulli
random variable is f(z) = p*(1 — p)'~* for x = 0,1 as this yields p when = = 1 and (1 — p)
when 2 = 0.

4. The expected value or (population) mean of a discrete random variable, X, with pmf f(z)
is
p=BX] =Y zf(x).

The mean of a Bernoulli variable is then 1f(1) + 0f(0) = p.
5. The variance of any random variable, X, (discrete or continuous) is
o> =FE[(X —p)’] = E[X*] - E[X]*.

The latter formula being the most convenient for computation. The variance of a Bernoulli
random variable is p(1 — p).

o

. The (population) standard deviation, o, is the square root of the variance.

~

. Chebyshev’s inequality states that for any random variable P(|X — p| > Ko) < 1/K2
This yields a way to interpret standard deviations.

8. A binomial random variable, X, is obtained as the sum of n Bernoulli random variables and
has pmf

PX =k = < i >1>A<1 —pn

Binomial random variables have expected value np and variance np(1 — p).

4 Continuous random variables

1. Continuous random variables take values on the continuum of the real numbers or even
higher-dimensional real vector spaces.

2. A continuous random variable X has a probability density function (pdf) f if for all a < b,
b
Pla< X <b) = / f(x)dx.
To be a pdf, a function must be positive and integrate to 1. That is, ff; flx)de =1
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3. If b is a positive function such that [* A(z)dz < oo then f(z) = h(x)/ [* h(z)dx is a
valid density. Therefore, if we only know a density up to a constant of proportionality, then
we can figure out the exact density.

4. The expected value, or mean, of a continuous random variable, X, with pdf f, is

5. The variance is 02 = E[(X — p)?] = E[X? — E[X]%
6. The distribution function, say F, corresponding to a random variable X with pdf, f, is
P(X <) = F(x) = / F(t)dt.
(Note the common convention that X is used when describing an unobserved random variable

while z is for specific values.)

7. The p™ quantile (for 0 < p < 1), say X, of a distribution function, say F, is the point so
that F(X,,) = p. For example, the .025"" quantile of the standard normal distribution is -1.96.

5 Properties of expected values and variances
The following properties hold for all expected values (discrete or continuous)
1. Expected values are additive: E[X +Y] = E[X] + E[Y].

2. Multiplicative and additive constants can be pulled out of expected values E[cX] = cE[X]
and E[c+ X] = c+ E[X].

3. For independent random variables, X and Y, E[XY] = E[X|E[Y].

IS

. In general, E[h(X)] # h(E[X]).

o1

. Variances are additive for sums of independent variables Var(X +Y) = Var(X) + Var(Y').

o

. Multiplicative constants are squared when pulled out of variances Var(cX) = ¢*Var(X).

~

. Additive constants do not change variances: Var(c + X) = Var(X).

6 The normal distribution

1. The normal or Gaussian density, often also called “bell curve”, is a very common den-
sity. It is specified by its mean, p, and variance, o?. The density is given by f(z) =
(2ma?) 2 exp{—(x — p)?/20%}. We write X ~ N(u,0?) to denote that X is normally
distributed with mean g and variance o2.
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. The standard normal density, labeled ¢, corresponds to a normal density with mean p = 0
and variance 02 = 1.
0(z) = (2m) " exp{—22/2}.

The standard normal distribution function is usually labeled ®.

w

. If f is the pdf for a N(u, 0?) random variable, X, then note that f(z) = ¢{(x — pi)/o}/o.
Correspondingly, if F' is the associated distribution function for X, then F(z) = ®{(x—pu)/o}.

4. If X is normally distributed with mean p and variance o2 then the random variable Z =
(X — p)/o is standard normally distributed. Taking a random variable subtracting its mean
and dividing by its standard deviation is called “standardizing” a random variable.

o1

. If Z is standard normal then X = pz + Zo is normal with mean y and variance o2

6. Approximately 68%, 95% and 99% of the mass of any normal distribution lies within 1, 2 and
3 (respectively) standard deviations from the mean.

th
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. Henceforth, the quantity z, refers to the a'* quantile of the standard normal distribution.
Z90, Z.95, Z.975 and zgg are 1.28, 1.645, 1.96 and 2.32, respectively.

8. Sums and means of normal random variables are normal (regardless of whether or not they
are independent). You can use the rules for expectations and variances to figure out 4 and o.

©

. The sample standard deviation of iid normal random variables, appropriated normalized, is a
Chi-squared random variable (see below).

7 Sample means and variances

Throughout this section let X; be a collection of iid random variables with mean y and variance

o2

1. We say random variables are iid if they are independent and identically distributed.
2. For random variables, X;, the sample mean is X = S Xi/n.
3. E[X] = pu = E[X,] (does not require the independence or constant variance).

4. If the X; are iid with variance o2 then Var(X) = Var(X,)/n = o?/n.

o1

. The sample variance is defined to be

g T X
n—1 :

6. Y (X — X)Z =>r, X2 - nX? is a shortcut formula for the numerator.

7. o/y/n is called the standard error of X. The estimated standard error of X is S/ /n. Do
not confuse dividing by this /n with dividing by n — 1 in the calculation of S2.
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. An estimator is unbiased if its expected value equals the parameter it is estimating.

©

3 E[SZ] = 02, which is why we divide by n — 1 instead of n. That is, S? is unbiased. However,
dividing by n — 1 rather than n does increase the variance of this estimator slightly, Var(S?) >
Var((n — 1)S%/n).

0. If the X; are normally distributed with mean p and variance o2, then X is normally distributed
with mean p and variance o%/n.

1. The Central Limit Theorem. If the X; are iid with mean y and (finite) variance o2 then
X—p
Z =
a/\/n

will limit to a standard normal distribution. The result is true for small sample sizes, if the X;
iid normally distributed.

N

If we replace o with S; that is, B
X—p
Z = s
S/vn
then Z still limits to a standard normal. If the X; are iid normally distributed, then Z follows
the Students ¢ distribution for small n.

8 Confidence intervals for a mean using the CLT.
1. Using the CLT, we know that

X—pu
Pl —21_0p2 < ——F—= <21 ~1-—
( Zl-aj2 = S/\/ﬁ = l(x/Z) «

for large n. Solving the inequalities for y, we calculated that in repeated sampling, the interval

X+ Zl—u/zi

vn
will contain p approximately 100(1 — a)% of the time.

2. Prior to conducting a study, you can fix the margin of error (half width), say d, of the interval
by setting n = (Z1_4/20/6)*. Round up. Requires an estimate of 0.

9 Confidence intervals for a variance and t confidence in-
tervals

(n-1)s*

1. If X; are iid normal random variables with mean z and variance o2 then —— follows what

is called a Chi-squared distribution with n — 1 degrees of freedom.




N

. Using the previous item, we know that

— 182

P (Xi*l,n/Z < 2 < Xifufn/2> =1l-aq,

where x2_, , denotes the a'"

ities for o yields

quantile of the Chi-squared distribution. Solving these inequal-

(n—1)5? (n—1)5?
X,Zkl,xw/z‘ Xia.u/z

is a 100(1 — )% confidence interval for o2. Recall this assumes that the X are iid Gaussian
random variables.

w

. Chi-squared confidence intervals depend heavily on the normality assumption.

4. If Z is standard normal and X is and independent Chi-squared with df degrees of freedom
then —Z— follows what is called a Student's ¢ distribution with df degrees of freedom.
X/

o1

. The Student's ¢ density looks like a normal density with heavier tails (so it looks more squashed
down).

o

By the previous item, if the X; are iid N(y, o2) then
X—n

Z =
S/vn

follows a Student's ¢ distribution with (n — 1) degrees of freedom. Therefore if ¢,,_1 , is the
a'™ quantile of the Student's ¢ distribution then

S S
Xttt 11-a/2

is a 100(1 — a)% confidence interval for .

~

The Student'’s ¢ confidence interval assumes normality of the X;. However, the ¢ distribution
has quite heavy tails and so the interval is conservative and works well in many situations.

I

For large sample sizes, the Student's ¢ and CLT based intervals are nearly the same because
the Student’s ¢ quantiles become more and more like standard normal quantiles as n increases.

©

For small sample sizes, it is difficult to diagnose normality/lack of normality. Regardless, the
robust t interval should be your default option.

10 Binomial confidence intervals

1. Binomial distributions are used to model proportions. If X ~ Binomial(n,p) then p = X/n
is a sample proportion.



2. p has the following properties.
a. It is a sample mean of Bernoulli random variables.
b. It has expected value p.
c. It has variance p(1 — p)/n. Note that the largest value that p(1 — p) can take is 1/4 at
p=1/2.
d. Z = —2=2— follows a standard normal distribution for large n by the CLT.
Vol=p)/n gen by
3. The Wald confidence interval for a binomial proportion is

PE 21-a/2V (1 —p)/n.

11 The likelihood for a binomial parameter p

1. The likelihood for a parameter is the probability density of a given outcome viewed as a
function of the parameter.

2. The binomial likelihood for observed data x is proportional to p”(1 — p)"~*.

3. The principle of maximum likelihood states that a good estimate of the parameter is the
one that makes the data that was actually observed most probable. That is, the principle of
maximum likelihood says that a good estimate of the parameter is the one that maximizes the
likelihood.

a. The maximum likelihood estimate for p is p = X/n.

b. The maximum likelihood estimate for 4 for iid N(z, o) data is X. The maximum likelihood
estimate for o2 is (n — 1)S?/n (the biased sample variance).

IS

. Likelihood ratios represent the relative evidence comparing one hypothesized value of the
parameter to another.

o1

. Likelihoods are usually plotted so that the maximum value (the value at the ML estimate) is
1. Where reference lines at 1/8 and 1/32 intersect the likelihood depict likelihood intervals.
Points lying within the 1/8 reference line, for example, are such that no other parameter value
is more than 8 times better supported given the data.

12 Group comparisons

1. For group comparisons, make sure to differentiate whether or not the observations are paired
(or matched) versus independent.

2. For paired comparisons for continuous data, one strategy is to calculate the differences and
use the methods for testing and performing hypotheses regarding a single mean. The resulting
tests and confidence intervals are called paired Student’s ¢ tests and intervals respectively.
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. For independent groups of iid variables, say X; and Y;, with a constant variance o across

groups

limits to a standard normal random variable as both n, and n, get large. Here

(e =183+ (n, — 1)y

2
SP —
Ny + Ny

is the pooled estimate of the variance. The quantities X, S,, n, are the sample mean, sample
standard deviation and sample size for the X; and Y, S, and n, are defined analogously.

. If the X; and Y; happen to be normal, then Z follows the Student’s t distribution with

n, + n, — 2 degrees of freedom.

. Therefore a (1 — a) x 100% confidence interval for s, — 1, is

1/2
_ _ 1 1
Y = X ttn,4n,-21-a/25 <1— + —)

e Ty

. Note that under unequal variances

o 2 g2
Y*X’\‘N<}l,/*ﬂr.&+i>

Ty

. The statistic

V- X — (py — 1)

2 s\ 2
(2+3)
approximately follows Gosset's ¢ distribution with degrees of freedom equal to

; (Sf/nl + S;/n_,/i))z
(£) /=1 + () /-1

13 Comparing two binomials

(a) Let X ~ Binomial(ny,p;) and p; = X/ny
(b) Let Y ~ Binomial(na, p2) and p2 = Y/ny

(c) To estimate py—p, we can use p1 —p2, which has an estimated standard error p1(=py) | Pa(l=pa)

n
and construct a Wald confidence interval:

P1— P2t 2iap

ny



