Problem 1. Suppose we study the number of times a student sits in a classroom with a TB infected, coughing neighbor until the student contracts the disease. Assume that each classroom encounter is an independent Bernoulli trial with probability p that the student becomes infected. This leads to the so-called geometric distribution $P(\text{Person is infected on encounter } x) = p(1 - p)^{x-1}$ for $x = 1, 2, \ldots$

a. Suppose that one subject’s number of classroom encounters until infection is recorded, say x. Derive the maximum likelihood estimate of p given the observed number x.

b. Suppose that the subjects value was $x = 2$. Use R to plot the likelihood function for p and interpret the result.

c. Suppose that is often assumed that the probability of transmission, p, is .01. We think that it is perhaps strange to have a subject get infected after only 2 encounters if the probability of transmission is really on 1%. According to the geometric mass function, what is the probability of a person getting infected in 3 or fewer encounters if p truly is .01?

d. Suppose that we follow n subjects (in different classrooms, each with a coughing, TB infected neighbor) and record the number of classroom encounters until infection (assume all subjects became infected) x_1, \ldots, x_n. Derive the maximum likelihood estimate of p. State your assumptions.

e. Suppose that we record values $x_1 = 3$, $x_2 = 5$, $x_3 = 2$. Plot and interpret the likelihood for p.

Problem 2. In a study of aquaporins, 6 frog eggs received a protein treatment. If the treatment of the protein is effective, the frog eggs implode. The experiment results in 5 frog eggs imploding. Historically, ten percent of eggs implode without the treatment. Assuming that the results for each egg are independent and identically distributed:

a. What is the probability of getting 5 or more eggs imploding in this experiment if the true probability of implosion is 10%? Interpret this number.

b. What is the maximum likelihood estimate for the probability of implosion?

c. Plot and interpret the likelihood for the probability of implosion.

Problem 3. Suppose that IQs in a particular population are normally distributed with a mean of 110 and a standard deviation of 10.

a. What is the probability that a randomly selected person from this population has an IQ between 95 and 115?

b. What is the 65th percentile from this distribution?
c. Suppose that 5 people are sampled from this distribution. What is the probability of 4 (80%) or more having IQs above 130?

d. Suppose that 500 people are sampled from this distribution. What is the probability of 400 (80%) or more having IQs above 130?

e. Consider the average of 100 people drawn from this distribution. What is the probability that this sample mean is larger than 112.5?

Problem 4. Note that R's function `rexp` generates random exponential variables. The exponential distribution with rate 1 (the default) has a theoretical mean of 1 and variance of 1.

a. Sample 1,000 observations from this distribution. Take the sample mean and sample variance. What numbers should these estimate and why?

b. Retain the same 1,000 observations from part a. Plot the sequential sample means by observation number. Explain the resulting plot.

 Hint: If x is a vector containing the simulated uniforms, then the code

 \[
 y \leftarrow \text{cumsum}(x) / (1 : \text{length}(x))
 \]

 will create a vector of the sequential sample means.

c. Plot a histogram of the 1,000 numbers. Does it look like a exponential density?

d. Now sample 1,000 sample means from this distribution, each comprised of 100 observations. What numbers should the average and variance of these 1,000 numbers be equal to and why?

e. Plot a histogram of the 1,000 sample means. What does it look like and why?