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5.2. COROLLARY. Let (X,d) and (Y, p) be metric spaces, and let f: X =Y
be a continuous function. If X is compact, then f(X) is a bounded subset

of Y.

Thus, when X is non-empty, compact and f: X — R is continuous, then
there exists M such that |f(z)] < M for every x € X. So in particular
sup{f(z) : x € X} and inf{f(z) : x € X} exists. The following shows that
not only does the supremum and infimum exist but that they are attained.

5.3. COROLLARY. Let (X,d) be a non-empty compact metric space and let
[+ X = R be continuous. Then there are points x,,,xnm € X, such that for
any v € X, fla,) < f(x) < fleam). Thatis, f(an) = inf{f(x) : v € X}
and f(zpr) =sup{f(x):z e X}.

The above result gives the proof that whenever f : [a,b] — R is continuous,
then f attains its maximum and minimum value. First, by Heine-Borel the
interval [a,b] is compact, now apply the above result. Note that (0,1) is
a bounded interval, f(x) = 1/x is continuous on this set but is not even
bounded.

5.4. THEOREM. Let (X,d) and (Y, p) be metric spaces, and let f: X — Y
be a continuous function. If X is compact, then [ is uniformly continuous.
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Thus, for example any rational function () = p(x)/q(x), such that ¢(z) # 0
on the set [a,b] will be uniformly continuous.

2.6. Connected Sets and the Intermediate Value Theorem

We will see in this section that the intermediate value theorem from calculus
is really a consequence of the fact that an interval of real numbers is a
connected set. First we need to define this concept.

6.1. DEFINITION. A metric space (X, d) is connected if the only subsets
of X that are both open and closed are X and the emptly set. A subset S
of X is called connected provided that the subspace (S,d) is a connected

metric space. If S is not connected then we say that S is disconnected or
separated.

6.2. PROPOSITION. A metric space (X, d) is disconnected if and only if X
can be written as a union of two disjoint, non-empty open sets.
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6.3. ExampLE. If (X,d) is a discrete metric space with two or more points,
then X is disconnected since X = {po} U {po}® expresses X as a disjoint
union of two non-empty open sets.

We now come to perhaps the most important example of a connected space.
By an interval in R we mean either an open interval, closed interval, or
half-open interval. The endpoints can be either an actual number or 4+oc or
—~00.

6.4. THEOREM. Let I C R be an interval or all of R. Then I is a connected
set.
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Now we come to a general version of the Intermediate Value Theorem.

6.5. THEOREM (Intermediate Value Theorem for Metric Spaces). Let (X, d)
be a connected metric space and let f: X — R be a continuous function. If
ro, 21 € X with f(xo) < L < f(ay), then there is xo € X with f(zo) = L.
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6.6. COROLLARY (Intermediate Value Theorem). Let I C R be an interval
or the whole real line and let f: I — R be continuous. If xo,x1 € I and
flxo) < L < f(ax1), then there is x9 between xg and x1 with f(xq) = L.

6.7. THEOREM. Let (X, d) and (Y, p) be metric spaces and let f: X — Y be
continuous. If X is connected, then f(X) CY is a connected subset.
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6.8. DEFINITION. A metric space (X, d) is called pathwise connected pro-
vided that for any two points, a,b € X there erists a continuous Sfunction
f:]0,1] = X such that f(0) =a and f(1) =b.

Intuitively, a space is pathwise connected if and only if you can draw a
“curve” between any two points with no breaks in the curve.

6.9. ExamMpPLE. The subset of the plane defined by

= {(: ,,sm(l)) 0<ae <1} Ul(0y): —1 <y < +1}

s a space that is (/()'rm()(,t(’d but not pathwise connected.



CHAPTER 3

The Contraction Mapping Principle

At this point we would like to present an important result that uses the
concepts that we have developed and together with some of its applications.
Logically, this material should be done later, since it uses facts from calculus
about derivatives and integrals which we have not yet discussed. But we find
that a little practical math at this stage helps to motivate the rest of the
course.

3.1. Contraction Mappings

1.1. DEFINITION. Let (X,d) be a metric space. A function f X — X is
called o contraction mapping provided that there is r,0 < r < 1, so that
d(f(x), fly)) <rd(x,y) for every x,y € X.

Note that saying that f is a contraction mapping is the same as saying that
it is Lipschitz continuous with constant r < 1. It is important to note that
when we say that f is a contraction mapping that is stronger than just
saying that d(f(x), f(y)) < d(x,y), since we need the r.

Given a function f : X — X any point satisfying f(xg) = x¢ is called a
fixed point of the function.

1.2. THEOREM (Contraction Mapping Principle). Let (X, d) be a complete
melric space and let [ X — X be a contraction mapping. Then:

(1) there exists a unique point xo € X, such that f(xg) = xo.

(2) if 21 € X is any point and we define a sequence inductively, by
setting xne1 = f(xyn), then lim, x, = x,,

. N . 1 e Z =1

(3) for this sequence, we have that d(xg, x,) < LQ—Z—T’;‘—);I———
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Thus, the contraction mapping principle not only guarantees us the existence
of a fixed point, but shows that there is a unique fixed point and gives us a
method for approximating the fixed point, together with an estimate of how
close the sequence x, is to the fixed point! This is a remarkable amount of
information.

Here's a typical application of this theorem. Let f(x) = cos(x) and note
that since 1 < 7/2 for 0 < o < 1, we have that 0 < f(x) < 1. Thus,
f:10,1] = [0,1] and is continuous. Also, by the mean value theorem, for
0<a<y<1, thereis ¢,x < ¢ <y with

F) = 1) = F(e)(y = x) = —sin(e)(y — ).
Hence, |f(y) — f(x)] < sin(c)ly — x| < sin(1)|y — 2| Thus, f(x) = cos(x) is
a contraction mapping with r = sin(1) < 1.
Using the fact that [0, 1] is complete, by the contraction mapping principle,
there is a unique point, 0 < xp < 1, such that cos(xp) = xo. Moreover, we
can obtain this point(or at least approximate it) by choosing any number
21,0 < 1 < 1 and forming the inductive sequence 41 = cos(xp).
The third part of the theorem gives us an estimate of the distance between
our “approximate” fixed point 2, and the true fixed point. In particular, if
we pick 21 = 0, then @9 = cos(x1) = 1, s0 |wg — x1| = 1. Hence, |zg — xn| <
sin{1)n!
1T—sin(l) "

3.2. Application: Newton’s Method

Newton’s method gives an iterative method for approximating the solution
to an equation of the form f(z) = 0, when f is differentiable.

The idea of the iteration is to choose any 1 and then get an “improved”
estimate to the solution by tracing the tangent line to the graph at the point
(z1, f(x1)) until it intersects the x-axis and letting this determine the point
25. The formula that one obtains is

flxy)

fra)

Newton’s method consists of repeating this formula iteratively to generate
a sequence of points

Ty =Ty~

flan)

f'(@n)

that, hopefully, converge to the zero of the function.

Note that if we set g(x) = x — Tf’%%’ then f(x) = 0 if and only if g(x) = z.
Thus, finding a zero of f is equi ralent to finding a fixed point of g. Moreover,
the above iteration is simply computing zy41 = g(xn).

Thus, if we can construct an interval [a,b] such that g : [a,b] — [a,b] and
such that ¢ is a contraction mapping on [a,b] then we will have a criterion
for convergence of Newton’s method.

The details are below.

Tptl = Ty —
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2.1. THEOREM (Newton’s Method). Let f be a twice continuously differ-
entiable function and assume that there is a point xg with f(xg) = 0 and
f'(xo) # 0. Then there is M > 0 so that for any x1 with g — M < xy <

xy + M the sequence of points obtained by Newton’s method starting at x;
converges to Ty.



