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CHAPTER 1

Metric Spaces

This is a summary of the material covered in the Introduction to Real Anal-
ysis course given at the University of Houston.

1.1. Definition and Examples

1.1. DEFINITION. Given a set X a metric on X is a functiond : X xX = R
satisfying:

(1) for every z,y € X, d(z,y) > 0,

(2) d(z,y) =0 if and only if x =y,

(3) d(z,y) = d(y, ),

(4) (triangle inequality) for every x,y,z € X, d(z,y) < d(z, z)+d(z,y).
The pair (X,d) is called a metric space.

1.2. EXAMPLE. Let X = R and set d(z,y) = |z — y|, then d is a metric on
R. We call this the usual metric on R.

To prove it is a metric we verify (1)-(4). For (1): d(z,y) = |z — y| = 0,
by the definition of the absolute value functions so (1). Since d(z,y) = 0 if
and only if |z — y| = 0 if and only if z = y, (2) follows. (3) follows since
d({L',y) = lCL‘ - y' = Iy - CCI = d(y,l‘) Finaﬂy, for (4)5 d(w7y) = ‘.’L’ - yl =
|t —2z+z—yl <l|lz—z|+ |z —y| =d(z,2) +d(z,y).

1.3. EXAMPLE (The taxi cab metric). Let X = R2. Given x = (x1,2),y =
(y1,v2), set d(z,y) = |x1 — y1| + |22 — yal|, then d is a metric on R2.

We verify (1)—(4). (1) and (3) are obvious. For (2): d(z,y) = 0 iff |z1 —
y1| + |ze — yo| = 0. But since both terms in the sum are non-negative for
the sum to be 0, each one must be 0. So d(z,y) = 0 iff |z; —y1| = 0 AND
|zg — y2| = 0 iff 1 = y1 and zp = yy iff @ = (1, 22) = (y1,%2) = y. Finally
to see (4):

d(z,y) = |x1 — y1| + |z2 — yo| = |21 — 21 + 21 — v1| + |22 — 22 + 22 — V2|
< lzw = 2]+ |21 =yl + |72 — 20| + |22 — yo| = d(z, 2) + d(2,1).
We often denote the taxi cab metric by di(z,y).

1.4. EXAMPLE. A different metric on R%. For x = (x1,22),y = (y1,y2) set
doo(z,y) = max{|z1 — 1], |x2 — y2|}. So the distance between two points is
the larger of these two numbers.
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We only check the triangle inequality. Let z = (z1, z2) be another point. We
have two cases to check. Either |z1 — y1| = d(z,y) OR d(z,y) = |22 — yal.
Case 1: d(z,y) = |1 — y1]-

Now notice that |21 — 21| < max{|z; — 21|, |z2 — 22|} = d(z, 2). Similarly,
|21 — y1] < max{|z1 — 1|, |22 — y2|}. Hence,

d(z,y) = |z1 ~y1| = |21 — 21 + 21 —y1| < |o1 — 21| + |21 — y1]
<d(z,2) +d(z,y).

Case 2: d(z,y) = |z2 — y2|. Now use |z — 29| < max{|z1 — 21|, |z — 22|} =
d(z, z). Similarly, |z2 — y2| < max{|z1 — y1|, |22 — y2|}. Hence,

d(z,y) = |z2 — y2| = |22 — 20 + 22 — y2| < |22 — 22| + |22 — ¥
< d(z, z) + d(z,y).

So in each case the triangle inequality is true, so it is true.

1.5. EXAMPLE. In this case we let X be the set of all continuous real-valued
functions on [0, 1]. We use three facts from Math 3333:

(1) if f and g are continuous on [0,1], then f — g is continuous on
[0,1],
(2) if f is continuous on [0,1], then |f| is continuous on [0,1],
(3) if h is continuous on [0,1], then there is a point 0 < tg < 1, so that
h(t) < h(to) for every 0 < t < 1. That is h(to) = max{h(t) : 0 <
t<1}.
Now given f,g € X, we set d(f,g) = max{|f(t) —g(t)] : 0 <t < 1}.
Note that by (1) and (2) |f — g| is continuous and so by (3) there is a point
where it acheives its mazimum.

We now show that d is a metric on X. Clearly, (1) holds. Next, if d(f,¢) =0,
then the maximum of | f(¢)—g(t)| is 0, so we must have that |f(t)—g(¢)] =0
for every t. But then this means that f(t) = g(¢) for every ¢, and so f = g.
So d(f,g) = 0 implies f = ¢. Also f = g implies d(f,g) = 0 so (2) holds.
Clearly (3) holds. Finally to see the triangle inequality, we let f,g,h be
three continuous functions on [0,1]. that is, f, g, h € X. We must show that

d(f,g) < d(f,h) +d(h, g).
We know that there is a point tp,0 < tg < 1, so that

d(f,g) = max{|f(t) — g(t)] : 0 <t <1} = [f(to) — g(to)-

Hence,

d(f,9) = |f(to) — g(to)| = | f(to) — h(to) + h(to) — g(to)|
< |f(to) — h(to)| + |h(to) — g(to)]
< max{|f(t) = h(t)] : 0 <t < 1} + max{|h(t) — g(t)] : 0 <t < 1}
= d(f,h) + d(h, g)
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1.6. EXAMPLE (Euclidean space, Euclidean metric). Let X = R™ the set of
real n-tuples. Forx = (ai,...,an) and y = (by,...,b,) we set
d(z,y) = V(a1 —b1)? + -+ + (an — bn)2.

This efines a metric on R™, which we will prove shortly. This metric is
called the Euclidean metric and (R",d) is called Euclidean space.

It is easy to see that the Euclidean metric satisfies (1)—(3) of a metric. It is
harder to prove the triangle inequality for the Euclidean metric than some
of the others that we have looked at. This requires some results first.

1.7. LEMMA. Let p(t) = at® + bt + c with a > 0. If p(t) > 0 for every t € R,
then b2 < 4ac.

1.8. PROPOSITION (Schwarz Inequality). Let ay, ..., an, by, ..., by be real num-
bers. Then

Ia1b1+---anbn|£\/a%+-~+a%\/b%+-~+b%.

1.9. COROLLARY. y/(a1 +b1)2 + -+ + (an + bp)?2 < v/a? + -+ a2+/b3 + - -

Now prove the triangle inequality.

1.10. EXaMPLE (The discrete metric). Let X be any non-empty set and

define
1
d(z,y) = {0 iii

Then this is a metric on X called the discrete metric and we call (X, d)
a discrete metric space.

1.2. Open Sets

2.1. DEFINITION. Let (X,d) be a metric space, fit x € X and r > 0. The
open ball of radius r centered at x is the set

B(z;r)={ye X : d(z,y) <r}.
2.2. EXAMPLE. In R with the usual metric, B(z;r) = {y : |z —y| < r} =
yiz—r<y<z+ri=(z—-r,xz+r).

2.3. EXAMPLE. InR? with the Euclidean metric, x = (z1, x3), then B(z;r) =
{(y1,92) : (x1 — 11)% + (z2 — y2)? < 72}, which is a disk of radius T centered
at T.

2.4. EXAMPLE. In R® with the Euclidean metric, B(x;r) really is an open
ball of radius r. This example is where the name comes from.

2.5. EXAMPLE. In (R? dy) we have

B(x;r) = {(y1,92) s |21 —wi| <7 and [zg — yo| <7} =
{lyi, )y —r<yi<zi+randzs—r<yy <ys+r}

Yoy
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So now an open “ball” is actually an open square, centered at x with sides
of length 2r.

2.6. EXAMPLE. In (R?,d;) we have B((0,0);1) = {(z,y) : |[z—0]+]y—0] < 1}
which can be seen to be the “diamond” with corners at (1,0),(0,1),(-1,0),
(0,-1).

2.7. EXAMPLE. When X = {f : [0,1] — R|f is continuous} and d(f,g) =
max{|f(t)—g(t)| : 0 <t < 1}, then B(f;r) = {g : g is continuous and f(t)—
r < g{t) < f(t) +r,Vt}. This can be pictured as all continuous functions g
whose graphs lie in a band of width r about the graph of f.

2.8. EXAMPLE. If we let R have the usual metric and let Y = [0,1] € R
be the subspace, then when we look at the metric space Y we have that
B(0;1/2) =[0,1/2) = (-1/2,1/2)NY.

2.9. EXAMPLE. When we let X be a set with the discrete metric and x € X,
then B(xz;r) = {x} whenr < 1. Whenr > 1, then B(z;7) = X.

2.10. DEFINITION. Given a metric space (X,d) a subset O C X is called

open provided that whenever x € O, then there is an r > 0 such that
B(z;m) C O.

Showing that sets are open really requires proof, so we do a few examples.

2.11. EXAMPLE. In R with the usual metric, an interval of the form (a,b) =
{z:a <z < b} is an open set.

So “open intervals” really are “open sets”.

2.12. EXAMPLE. In R? with the Euclidean metric, a rectangle of the form
R={(y1,2):a <y1 < b,c <y <d} is an open set.

2.13. EXAMPLE. In R with the usual metric an interval of the form [a,b) is
not open.

CAREFUL! If we let Y = [0,1) C R be equipped with the metric from R.
Then in Y the set O = [0,1/2) is open! (Explain why.)
The next result justifies us calling B(z; ) an open ball.

2.14. PROPOSITION. Let (X,d) be a metric space, fix x € X and r > 0. Then
B(z;r) is an open set.

2.15. THEOREM. Let (X,d) be a metric space. Then

(1) the empty set is open,

(2) X is open,

(3) the union of any collection of open sets is open,
(4) the intersection of finitely many open sets is open.

2.16. PROPOSITION. In a discrete metric space, every set is open.



1.2. OPEN SETS 9

Uniformly Equivalent Metrics. The definition of open set really de-
pends on the metric. For example, on R if instead of the usual metric we
used the discrete metric, then every set would be open. But we have seen
that when R has the usual metric, then not every set is open. For example,
[a, ) is not an open subset of R in the usual metric. Thus, whether a set is
open or not really can depend on the metric that we are using.

For this reason, if a given set X has two metrics, d and p, and we say
that a set is open, we generally need to specify which metric we mean.
Consequently, we will say that a set is open with respect to d or open
in (X, d) when we want to specify that it is open when we use the metric
d. In this case it may or may not be open with respect to p.

In the case of R2, we already have three metrics, the Euclidean metric d,
the taxi cab metric d; and the metric dy. So when we say that a set is
open in R?, we could potentially mean three different things. On the other
hand it could be the case that all three of these metrics give rise to the same
collection of open sets.

In fact, these three metrics do give rise to the same collections of open sets
and the following definition and result explains why.

2.17. DEFINITION. Let X be a set and let d and p be two metrics on X. We
say that these metrics are uniformly equivalent provided that there are
constants A and B such that for every x,y € X,

p(z,y) < Ad(z,y) and d(z,y) < Bp(z,y).

2.18. EXAMPLE. On R? the Euclidean d and the metric ds are uniformly
equivalent. In fact,

doo(z,y) < d(z,y) and d(z,y) < V2doo(z, y).

To see thiS, let z = (al,ag),y = (bl, bg). Since |a1——b1| S \/(al e b1)2 + (ag —
and |ag — ba] < /(a1 — b1)% + (a2 — b2)?, we have that

doo(z,y) = max{|a — b1, |az — ba2|} < /(a1 — b1)2 + (ag — ba)? = d(x,y).

On the other hand, since |a; — b1| < doo(2,y) and |as — b2| < dwo(z,y), we
have that (a1 —b1)% + (ag — b2)? < 2(dwo(z, y))?. Taking square roots of both
sides, yields d(z, y) < v2deo(z, 7).

2.19. EXAMPLE. On R? the Euclidean metric d and dy are uniformly equiv-
alent. In fact,

d(z,y) < di(z,y) and di(z,y) < V2d(z,y).
We have that
di(z,y)* = (a1 = bi| + |az — ba|)?
= la1 — b1|* + 2|a; — byllag — ba| + |ag — ba|> > (a1 — b1)? + (ag — by)?
= (d(z,y))>.
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Hence, d(l‘,y) < dl(xvy)‘
To see the other inequality, we use the Schwarz inequality,

di(z,y) = |lar —b1| - 1+ |ag — ba| - 1] <

\/|a1—b1|2+\a2—b2|2\/12+12 \/_d.T y

Given a set X with metrics d and p, a point z € X and r > 0, we shall write
By(z;7) ={y € X :d(z,y) <r} and By(z;r) ={y € X : p(z,y) <r}.

2.20. LEMMA. Let X be a set, let d and p be two metrics on X that are

uniformly equivalent, and let A and B denote the constants that appear in
Definition 2.17. Then B,(z;r) C By(x; Br) and By(x;r) C By(z; Ar).

2.21. THEOREM. Let X be a set and let d and p be metrics on X that are
uniformly equivalent. Then a set is open with respect to d if and only if it
is open with respect to p.

1.3. Closed Sets

3.1. DEFINITION. Given a set X and E C X, the complement of E, denoted
E¢ is the set of all elements of X that are not in E, i.e.,
E¢={zeX:z¢E}.

Other notations that are used for the complement are E¢ = CE = X\E.
Note that (E°)¢ = E.

3.2. DEFINITION. Let (X,d) be a metric space. Then a set E C X is closed
if and only if E° is open.

The following gives a useful way to re-state this definition.

3.3. PROPOSITION. Let (X,d) be a metric space. Then a set E is closed if
and only if there is an open set O such that E = O°,

3.4. EXAMPLE. In R with the usual metric, we have that (b,o0) is open and
(=00, a) is open. So when a < b we have that O = (—o0,a) U (b, +00) is
open. Hence, O° = [a,b] is closed.

This shows that our old calculus definition of a “closed interval”, really is a
closed set in this sense.

3.5. DEFINITION. Let (X,d) be a metric space, let x € X and let v > 0. The
closed ball with center x and radius r is the set

B (z;r)={y e X : d(z,y) <r}.
The following result explains this notation.

3.6. PROPOSITION. Let (X, d) be a metric space, let x € X and let r > 0.
Then B~ (z;r) is a closed set.
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Because the definition of closed sets involves complements, it is useful to
recall DeMorgan’s Laws. Given subsets E; C X where ¢ belongs to some set
I, we have

| JEi ={x € X : there exists i € I with z € E;}
i€l
and
ﬂEiz{:reX::ceEi for every ¢ € I}.
iel
3.7. PROPOSITION (DeMorgan). Let E; C X fori € I. Then

(JE)® = Ef and () E)° = EF.

i€l i€l i€l i€l
The following theorem about closed sets follows from DeMorgan’s Laws and
Theorem 1.31.

3.8. THEOREM. Let (X, d) be a metric space. Then:
(1) the empty set is closed,
(2) X is closed,
(3) the intersection of any collection of closed sets is closed,
(4) the union of finitely many closed sets is closed.

3.9. EXAMPLE. Consider R equipped with the usual metric. Let C; = [0, 1],
Cy = C1\ (1/3,2/3), C3 = Cy\ ((1/9,2/9) U (4/9,5/9) U (7/9,8/9)) and
proceed accordingly. Then, each C; is closed and thus C = ﬂ;":’ICj is closed
as well. This set is known as the Cantor set.

3.10. PROPOSITION. In a discrete metric space, every set is closed.

As with open sets, when there is more than one metric on the set X, then
we need to specify which metric we are referring to when saying that a set
is closed. The following is the analogue of Theorem 1.41 for closed sets.

3.11. PROPOSITION. Let X be a set and let d and p be two metrics on X that
are uniformly equivalent. Then a set is closed with respect to d if and only
if it is closed with respect to p.

1.4. Convergent Sequences

Our general idea from calculus of a sequence {p,} converging to a point p is
that as n grows larger, the points p, grow closer and closer to p. When we
say “grow closer” we really have in our minds that some distance is growing
smaller. This leads naturally to the following definition.

4.1. DEFINITION. Let (X, d) be a metric space, {pp} C X a sequence in X
and p € X. We say that the sequence {p,} converges to p and write

lim p, = p,

n—r+o0

provided that for every e >), there is a real number N so that when n > N,
then d(p, pn) < €.
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Often out of sheer laziness, I will write lim,, p, = p for lim,,_, 1~ Pn = D

4.2. EXAMPLE. When X = R and d is the usual metric, then d(p,pn) =
|p—pn| and this definition is identical to the definition used when we studied
convergent sequences of real numbers in Math 3333.

For a quick review, we will look at a couple of examples of sequences and

recall how we would prove that they converge.

For a first example, consder the sequence given by p, = gf:é Fo any natrual

number n, the denominator of this fraction is non-zero. So this formula

defines a sequence of points. For large n, the +1 in the numerator and the

—2 in the denominator are small in relation to the 3n and 5n so we expect

that this sequence has limit p = %

Now for some scrap work. To prove this we would need

3(bn —2) — (3n + 1)5l e
5(5n — 2)

Simplifying this fraction leads to the condition ﬁTﬁ < €. Solving for n we

see that this is true provided % < 25n—10, i.e., %56 + % < n. So it looks like

we should choose, N = 5%,,—6 + % This is not a proof, just our scrap work.

Now for the proof:

Given € > 0, define N = 2%55 + % For any n > N, we have that 25n — 10 >

25N — 10 = 1, and so d(p,pn) = |2 - dntl] = Ll < (1)7! = €. Hence,

limy s {00 Pn = p-

For the next example, we look at p, = v'n? 4+ 8n — n and prove that this

sequence has limit p = 4.

Now that we have recalled what this definition means in R and have seen

how to prove a few examples. We want to look at what this concept means
in some of our other favorite metric spaces.

d(p,pn) = Ip —pnl| = |

4.3. THEOREM. Let R¥ be endowed with the Euclidean metric d, let {p,} C
R* be a sequence with p, = (a1myQ2m, -5 0kp) and let p = (a1, az,...,a;) €
R¥. Then limp— 100 P = p in (R¥,d) if and only if for each j,1 < j < k, we
have limp_s 400 ajn = a; tn R with the usual metric.

So the crux of the above theorem is that a sequence of points in R¥ converges
if and only if each of their components converge.

If we combine our first two examples with the above theorem, we see that if
we define a sequence of points in R? by setting p, = (g;‘:;, n?+ 8n —n)
then in the Euclidean metric these points converge to the point p = (%, 4).

What if we had used the taxi cab metric or doo metric on R? instead of the
Euclidean metric, would these points still converge to the same point? The
answer is yes and the following result explains why and saves us having to
prove separate theorems for each of these metrics.

4.4. PROPOSITION. Let X be a set with metrics d and p that are uniformly
equivalent, let {p,} C X be a sequence and let p € X be a point. Then
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{pn} converges to p in the metric d if and only if {p,} converges to p in the
metric p.

We now look at the discrete metric.

4.5. PROPOSITION. Let (X,d) be the discrete metric space, let {pn} C X be
a sequence, and let p € X. Then the sequence {p,} converges to p if and
only if there exists N so that for n > N, p, = p.

A sequence {p,} such that p, = p for every n > N, is often called eventu-
ally constant.
We now look at some general theorems about convergence in metric spaces.

4.6. PROPOSITION. Let (X,d) be a metric space. A sequence {pn} C X can
have at most one limit.

The above result is most often used to prove that two points are really the
same point, since if lim, p, = p and lim, p, = g, then p = q.
Convergence is an important way to characterize closed sets.

4.7. THEOREM. Let (X,d) be a metric space and let S C X be a subset.
Then S is a closed subset if and only if whenever {p,} C S is a convergent
sequence, we have lim, p, € S.

That is, a set is closed if and only if limits of convergent sequences stay in
the set.

One of our other main results from Math 3333 about convergent seqeunces
in R is that every convergent sequence of real numbers is bounded. This
plays an important role in metric spaces too. But first we need to say what
it means for a set to be bounded in a metric space.

4.8. PROPOSITION. Let (X, d) be a metric space and let E C X be a subset.
Then the following are equivalent:

(1) there exists a point p € X and r1 > 0 such that E C B~ (p;T1),
(2) there exists a point ¢ € X and r9 > 0 such that E C B(g;T2),
(3) there exists M > 0 so that every x,y € E satisfies d(z,y) < M.

4.9. DEFINITION. Let (X, d) be a metric space and let E C X. We say that
E is a bounded set provided that it satisfies any of the three equivalent
conditions of the above proposition.

4.10. PROPOSITION. Let (X,d) be a metric space. If {pn} is a convergent
sequence, then it is bounded.

Recall that R¥ is a vector space, for p = (ay,...,ax),q = (by,...,b;) € R¥
and r € R we have

p+qg=(a1+b1,...,ax +by) and rp = (ray,...,rag).
There is also the “dot product”,
prq=a1by + -+ agby.
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Note that in terms of the dot product and Euclidean metric, we can see that
the Schwarz inequality says that

Ip-al < /ad + -+ /B2 4+ b = d(0,p)d(0, 9).

Two other useful connection to notice between the Euclidean metric and the
vector space operations is that

d(p,q) = V(a1 — b1)? + -+ (ax — bx)? = d(0,p— q)

and

d(rp,rq) = \/(ray — rby)® + -+ + (ra — rby)? = |rld(p, 9).

4.11. LEMMA. Let (R¥,d) be Euclidean space. If E C R* s a bounded set,
then there is A so that E C B~(0; A).

The following result can be proved using Theorem 1.57 and results from
Math 3333 about convergence of sums and product of real numbers. we give
a proof that mimics the proofs for real numbers.

4.12. THEOREM. Let (R¥,d) be Euclidean space, let p, = (a1, ..., kyn) and
qn = (biny--.,bkn) be sequences in R* with lim, pp = p = (ay,-..,ax) and
lim, g, = ¢ = (b1,...,b), and let {r,} be a sequence in R with lim, rp, = r.
Then we have the following:

(1) imppn +gn=p+ ¢,

(2) limp, rppn =P,

(3) limnpp gn=p-q.

1.5. Interiors, Closures, Boundaries of Sets

In this section we look at some other important concepts related to open
and closed sets.

5.1. DEFINITION. Let Q_(,d) be a metric space and let A C X. Then the
closure of A, denoted A is the intersection of all closed sets containing A.

5.2. PROPOSITION. Let (X,d) be a metric space and A C X, then A is
closed. Moreover, A is closed if and only if A = A.

It will be convenient to have another description of A.

5.3. PROPOSITION. Let (X,d) be_a metric space and A C X, then if C is
any closed set with A C C, then A C C.

Thus, A4 is the smallest closed set containing A.

5.4. EXAMPLE. The closure of (0,1) in R, equipped with the usual metric, is
[0,1). Why? If E is closed and (0,1) C E, then {0,1} € E, because p, = T%ﬁ
defines a sequence {pn} with p, € (0,1) for each n and lim,p, = 0, and
gn = 1 — p, defines a sequence with limit lim, ¢, = 1. So any closed set
containing (0,1) must also contain [0,1], but [0, 1] is closed, and the smallest
such set is [0, 1] itself.
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5.5. THEOREM. Let p € X, then p € A if and only if for every r > 0,
B(p;r) N A is non-empty.

5.6. EXAMPLE. If X = {z € R: z > 0} with the usual metric and A = {x :
0 <z <1} then A= (0,1].

By analogy, we define the interior of a set.

5.7. DEFINITION. Let (X,d) be a metric space and A C X. The interior of
A is defined by
A°=U{E CA:F open}.

5.8. PROPOSITION. Let (X,d) be a metric space and A C X, then A° is
open. Moreover, A is open if and only if A = A°.

5.9. PROPOSITION. Let (X,d) be a metric space and A C X, then
A°={zx e A: thereis § >0 and B(z,5) C A}.
5.10. EXAMPLE. Let X = R with the usual metric. Then int([a,b]) = (a,b).

5.11. EXAMPLE. Let X = R? with the Euclidean metric. Then int({(z1,z2) :
a <z <bc<L < d}) = {(z1,22) : a < 11 < bye < 29 < d} and

int({(z1,0) : a < x1 < b}) is the empty set.

5.12. EXAMPLE. Let R be equipped with the usual metric and C be the Cantor
set, then C° = {.

5.13. DEFINITION. Let (X,d) be a metric space and let A C X. Then the
boundary of A, denoted OA is the set A = A\ A°.

5.14. EXAMPLE. Let X = R with the usual metric and let A = (0,1]. Then
0A ={0,1} and 0Q = R.

5.15. LEMMA. In a metric space (X,d), for each S C X,

S¢ = (8°)°.
5.16. PROPOSITION. Given a metric space (X,d) and S C X, then p € 3S
if and only if for each r > 0, B(p,7) NS # 0 and B(p,r) NS¢ # (.

5.17. COROLLARY. Let p € X. p € 89S if and only if there is a sequence
{pn} C S and a sequence {g,} C S¢ with lim, p, = lim, ¢, = p.

5.18. EXAMPLE. Let X = R, equipped with the usual metric, then Q = R,
Q° =0, so 0Q =R.

1.6. Completeness

One weakness of “convergence” is that when we want to prove that a se-
quence {pn} converges, then we need the point p that it converges to before
we can prove that it converges. But often in math, one doesn’t know yet
that a problem has a “solution” and we can only produce a sequence {py}
that somehow is a better and better approximate solution and we want to
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claim that necessarily a point exists that is the limit of this sequence. It
is for these reasons that mathematicians introduced the concepts of Cauchy
sequences and complete metric spaces.

6.1. DEFINITION. Let (X,d) be a metric space. A sequence {pp} C X is
called Cauchy provided that for each € > 0 there exists N so that whenever
m,n > N, then d(pn,pm) < €.

We look at a few properties of Cauchy sequences.

6.2. PROPOSITION. Let (X,d) be a metric space and let {p,} C X be a
sequence. If {pn} is a convergent sequence, then {pn} is a Cauchy sequence.

6.3. PROPOSITION. Let (X,d) be a metric space, {pn} C X a sequence and
{pn,} a subsequence. If {pn} is Cauchy, then {pn,} is Cauchy, i.e., every
subsequence of a Cauchy sequence is also Cauchy.

6.4. PROPOSITION. Let (X,d) be a metric space and let {p,} C X be a
Cauchy sequence. Then {p,} is bounded.

6.5. DEFINITION. Let (X,d) be a metric space. If for each Cauchy sequence
in (X,d), there is a point in X that the sequence converges to, then (X,d) is
called a complete metric space.

6.6. EXAMPLE. Let X = (0,1] € R be endowed with the usual metric
d(z,y) = |z —y|. Then X is not complete, since {%} C X is a Cauchy
sequence with no point in X that it can converge to.

6.7. EXAMPLE. Let Q denote the rational numbers with metric d(z,y) =
|z —y|. We can take a sequence of rational numbers converging to V2, which
we know is irrational. Then that sequence will be Cauchy, but not have a
limit in Q. Thus, (Q,d) is not complete.

In Math 3333, we proved that R with the usual metric has the property that
every Cauchy sequence converges, that is, (R, d) is a complete metric space.
This fact is so important that we repeat the proof here. First, we need to
recall a few important facts and definitions.

Recall that a set S C R is called bounded above if there is a number b € R
such that s € S implies that s < b. Such a number b is called an upper
bound for S. An upper bound for S that is smaller than every other upper
bound of S is called a least upper bound for S and denoted lub(S) in
Rosenlicht’s book. In the book that we used for Math 3333, a least upper
bound for S was called a supremum for S and denoted sup(S).
Similarly, a set S C R is called bounded below if there is a number a € R
such that s € S implies that @ < s. Such a number a is called a lower
bound for S. A lower bound for S that is larger than every other lower
bound is called a greatest lower bound for S, and denoted glb(S) in
Rosenlicht’s book. In the book that we used for Math 3333, a greatest lower
bound was called an infimum for S and denoted inf(S).
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A key property of R is that every set that is bounded above has a least
upper bound and that every set that is bounded below has a greatest lower
bound.

6.8. PROPOSITION. Let {a,} be a sequence of real numbers such that the
set S = {a, : n > 1} is bounded above and such that an < ant1 for every
n. Then {an} converges and limy, a, = lub(S). If {bp} is a sequence of real
numbers such that S = {b, : n > 1} is bounded below and by, > byy1, then
{bn} converges and lim, b, = glb(S).

6.9. THEOREM. Let (R,d) denote the real numbers with the usual metric.
Then (R,d) is complete, i.e., every Cauchy sequence of real numbers con-
verges.

Another set of important examples of compelte metric spaces are the Eu-
clidean spaces.

6.10. THEOREM. Let (R¥,d) denote k-dimensional Euclidean space. Then
(RF, d) is complete.

6.11. PROPOSITION. Let X be a set and let d and p be two uniformly equiva-
lent metrics on X. The metric space (X, d) is complete if and only if (X, p)
is complete.

By the above theorem and proposition, (R¥,d;) and (R¥, dw,) are also com-
plete metric spaces.

6.12. EXAMPLE. Let X = (0,1]. Recall that X is not complete in the usual

metric d(z,y) = |z — y|. Given z,y € X we set y(z,y) = |+ — §| It is easy
to check that v is a metric on X. We claim that (X,~) is complete! Thus,

d and 7y are not uniformly equivalent.

We sketch the proof. To prove this we must show that if {z,} C X is Cauchy
in the v metric, then it converges to a point in X. Given € > 0, suppose that
forn,m > N, v(zp, Tm) < €. Since Y(xp, Tm) = IEIZ_EIZ‘ = ]%ﬁml we have
that |zn — Tm| < €|lzptm| < €. Thus, {z,} is Cauchy in the usual metric.
Let £ = lim, z,. Since, 0 < z, < 1 we have that 0 < z < 1. We claim that
x # 0. Because if x = 0, then for any N, when n,m > N, if we fix m and we
let n = +o00, z, — 0, then 5}; — 4o00. Thus, y(zn, 2m) = |§1; — ﬁi — +00.
This prevents us making y(zn, Zm) < € and so violates the Cauchy condition.
Thus,  # 0. But also z,, # 0 for every n. By one of our basic results from
3333, when =z # 0,z, # 0 and lim, z, = z, then limn—;: = % But this
last limit being true means that for any ¢ > 0, we can pick N so that when
n > N, |% — 51;| < €. But this implies that for n > N, v(z,z,) < € and so
{xn} converges to = in the v metric! We are done.

Now that we have a few examples of complete metric spaces, the following

result gives us many more examples.

6.13. PROPOSITION. Let (X,d) be a complete metric space. If Y C X is a
closed subset, then (Y,d) is a complete metric space.
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1.7. Compact Sets

7.1. DEFINITION. Let (X,d) be a metric space, S C X. A collection {Uy }aca
of subsets of X is called a cover of S provided that S C UaeaU, and an
open cover of S provided that it is a cover of S and every set U, is open.
A subset S C X is called compact provided that whenever {Uy}aca is an
open cover of S, then there is a finite subset F C A such that S C UgerU,.
The collection {Uqa}acF is called a finite subcover.

7.2. EXAMPLE. Let R have the usual metric. Let U, = B(0;n) = (—n,+n),
n € N. Then these sets are open and R = UpenUy,. Suppose that there was
a finite subset F' = {n1,..,n} €N so0 that R C UpepUp = Up, U---UUpy,.
If we let N = max{ny,...,np}, then since n < m implie that U, C U, we
would have that R C UpepU, = Un. But this implies that every real number
is in B(0; N), a contradiction. Hence, no finite subcover of {Up}nen covers
R and so R is not compact.

7.3. PROPOSITION. Let (X,d) be a discrete metric space and let K C X.
Then K is compact if and only if K is a finite set.

Before we can give many more examples of compact sets, we need some
theorems.

7.4. PROPOSITION. Let (X,d) be a metric space. If K C X is compact, then
K is closed.

7.5. PROPOSITION. Let (X,d) be a metric space, K C X a compact set and
let S C K be a closed subset. Then S is compact.

The next few results give a better understanding of the structure of compact
sets.

7.6. PROPOSITION. Let (X,d) be a metric space, K C X a compact set and
S C K an infinite subset. Then S has a cluster point in K.

Subsequences and compactness. We recall the definition of a sub-
sequence.

7.7. DEFINITION. Given a set X, a sequence {pp} in X and numbers, 1 <
ny < mng <---, the new sequence that we get by setting qx = pn, 1is called a
subsequence of {p,}.

For example, if ngy = 2k, kK = 1,2, ..., then the subsequence that we get is just
the even numbered terms of the old sequence. If n, =2k~ 1, k= 1,2, ...,
then we get the subsequence of odd terms.

Often we simply denote the subsequence by {pn, }.

7.8. PROPOSITION. Let (X,d) be a metric space, {p,} a sequence in X and
p € X. If the sequence {p,} converges to p, then every subsequence of {pn}
also converges to p.



1.7. COMPACT SETS 19

7.9. DEFINITION. Let (X,d) be a metric space, K C X. Then K is called
sequentially compact if every sequence in K has a subsequence that con-
verges to a point in K.

In some texts a set is said to have the Bolzano-Weierstrass property if
and only if it is sequentially compact.

7.10. PROPOSITION. Let (X,d) be a metric space, K C X. If K is compact,
then K is sequentially compact.

7.11. DEFINITION. Let (X,d) be a metric space, K C X and let ¢ > 0. A
subset ' C K is called an e-net for K provided that given any p € K there
is q € E, such that d(p,q) < €. The subset K is called totally bounded if
for each € > O there is an e-net for K consisting of finitely many points.

7.12. EXAMPLE. Let K = [0,1] for each € > 0, let N be the largest integer
so that Ne < 1. Then {0,¢,2¢, ..., Ne} is an e-net for K.

7.13. PROPOSITION. Let (X,d) be a metric space and K C X. If K is se-
quentially compact, then K is totally bounded and complete.

Now we come to the main theorem.

7.14. THEOREM. Let (X,d) be a metric space and K C X. Then the following
are equivalent:

(1) K is compact,

(2) K is sequentially compact,

(3) K is totally bounded and complete.

7.15. THEOREM (Heine-Borel). Let (R¥,d) denote k-dimensional Euclidean

spaceand let K C R¥. Then K is compact if and only if K is closed and
bounded.

7.16. THEOREM (Bolzano-Weierstrass). Let (R¥,d) be k-dimensional space.
If {pn} C R¥ is a bounded sequence, then it has a convergent subsequence.

Historically, the Bolzano-Weierstrass theorem was proved before Heine-Borel.
The original proof used a “divide and conquer” strategy.

7.17. DEFINITION. Let (X,d) be a metric space and letY C X. A subset S C
Y is called dense provided that SNY =Y. The set Y is called separable
if there is a sequence S = {pp} C Y that is dense.

7.18. PROPOSITION. Let (X,d) be a metric space. If K C X is compact,
then K is separable.






