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3.3. Application: Solution of ODFE’s

In this section we show how the contraction mapping principle can be used
to deduce that solutions exist and are unique for some very complicated
ordinary differential equations.
Starting with a continuous function h(r,y) and an intial value yg, we wish
to solve

@ h(z,y),y(a) = yo.
dx
That is, we seek a function f(z) so that f'(z) = h(z, f(x)) for a <z < b
and f(a) = yo. Such a problem is often called an initial value problem(IVP).
For example, when h(x,y) = 2%y*, then we are trying to solve, % = %y’
which can be done by separation of variables. But our function could be
h(x,y) = sin(xy), in which case the differential equation becomes % =
sin{xy), which cannot be solved by elementary means.
For this application, we will use a number of things that we have not yet
developed fully. But again, we stress that we are seeking motivation.
First note that by the fundamental theorem a continuous function f :
[a,b] — R satisfies the IVP if and only if for a < o <,
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This is often called the integral form of the IVP.
Now let C([a,b]) denote the set of all real-valued continuous functions on
the interval [a, b]. Note that if we are given any f € C([a,b]) and we set

mm:/EWwa+m

then g is also a continuous function on [a, b].

Thus, we can define a map ® : C'([a,b]) = C([a,b]) by letting ®(f) = ¢,
where f and ¢ are as above. We see that solving our IVP is the same as
finding a fixed point of the map ®! Also, we are now in a situation, where
by a “point” in our space C([a,b]), we mean a function.

This is starting to look like an application of the contraction mapping princi-
ple. For this we would first need a metric d on the set C([a, b])(again points
in this metric space are functions!) so that (C([a,b]), d) is a complete metric
space and then we would need ¢ to be a contraction mapping.

It turns out that there is such a metric on C([a,b]) and that for many
functions & the corresponding map ¢ is a contraction mapping.

First for the metric. Given any two functions f, g € C([a,b]), we set

d(f,g) = sup{|f(x) — g(z)| : a <z < b}.

This is the example that was introduced in the our first section on metric
spaces. Note that since f, g are continuous functions on the compact metric
space [a, b], we have that the continuous function f — g is bounded. Hence,
the supremum is finite. Also, it is clear that d(f.g) = 0 if and only if
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flz) = g(x) for all z, i.e., if and only if f = g. Note that d(f,g) = d(g. f).
Finally, if f,¢,h € C([a,b]), then
A(f,g) = sup{ | () — hlx) + h(x) — gla)] -0 < o < b} <
sup{|£(z) — h(@)| + [h(x) — g(x)] 0 < x < b} <
sup{|f(z) = h(x)] : a <z < b} +sup{|h(z) —g(@)]:a <z <b} =
d(f,h)+d(h, g).

Thus, we see that d is indeed a metric on C([a,b]). To apply the contraction
mapping principle, we need this metric space to be complete. This fact is
shown by the following theorem.

3.1. THEOREM. The metric space (C([a,b]),d) is complete.
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We now have all the tools at our disposal needed to solve some IVP’s.

3.2. THEOREM. Let h(x,y) be a continuous function on [a,b] xR and assume
that |h(z,y1) — h(z,y2)| < Kly1 — y2| with r = K(b—a) < 1. Then for any
Yo, the initial value problem, f'(x) = h(z, f(x)), f(a) = yo has a unique
solution on the interval |a, b}.
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The contraction mapping principle not only gives us the existence and
uniqueness of solutions to the IVP, but it also gives us a method for approx-
imating solutions and very nice bounds on the error of the approximation.

The above theorem ig far from the most useful, because the conditions on
h(z,y) are too restrictive for most applications. For example, h(z,y) = z3y?
doesn’t satisfy our hypothesis. For this reason you will seldom see it in a
textbook. But it is does have the advantage of being the simplest to prove
and we believe that it illustrates the key guiding principles of the proofs of
more complicated results.



