CHAPTER 4

Riemann and Riemann-Stieltjes Integration

In this chapter we develop the theory of the Riemann integral, which is
the type of integration used in your calculus courses and we also introduce
Riemann-Stieltjes integration which is widely used in probability, statistics
and financial mathematics.

4.1. The Riemann integral

Given a closed interval [a,b] by a partition of [a,b] we mean a set P =
{2021,y oy Tpe1, 0} With a = 29 < 2y < ... <, = b. The norm or width
of the partition is
WPl = max{n; — a1 1 1 < i< n}.

Given two partitions Py and Py we say that Ps is a refinement of Py or
P, refines P provided that as sets Pp € Py. Note that if Py refines Py,
then ||Paf| < [Py

Given a bounded function f : [a,b] — R and a partition P = {2y, ...,xn} of
la,b] for i =1,...,n, we set

M; = sup{f(x):x;o) < <}

and
my = nf{f(z):x <a <af.

The upper Riemann sum of f given the partition P is the real number,
T
U(f,Py=> Mla;—zi1),
=1

and the lower Riemann sum of fis

n

L(f,P)= E mg(a; — xi-1).
i=1
Note that if we hadn’t assumed that f is a bounded function then some of
the numbers M; or m; would have been infinite. This is the one reason that
we can only define Riemann integrals for bounded functions.
By a general Riemann sum of f given P, we mean a sum of the form
n
fl) (e — 2.
7==1

Hl
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where 2} is any choice of points satisfving, v < 2 < 2y for i = 1, ... n.

Since m; < f(x!) < M,. the upper and lower Riemann give an upper and
lower bound for general Riemann sums, i.e.,

L(f.P) <Y flal)(ai = 2im) < U(f.P).
=1

In fact, since we can choose the points 2] so that f(x}) is arbitrarily close
to M;, we see that U(f,P) is actually the supremum of all general Riemann
sums of f given P. Similarly, by choosing the points 2} so that f(a) is
arbitrarily close to m;, we see that L(f,P) is the infimum of all general
Riemann sums.

Thus, if we want all general Riemann sums of a function to be “close” to a
value that we wish to think of as the “integral of {7, then it will be enough
to study the “extreme” cases of the upper and lower swuns.

1.1. PROPOSITION. Let f:[a,b] — R be a bounded function and let Py and
Po be partitions of [a,b] with Py a refinement of Pi. Then

LOf,PL) < LU P2) < U P2) UL P
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1.2. DEFINITION. Let f:{a,b] — R be a bounded function. Then the upper

Riemann integral of f is the number

—=b
/ f(x)dr = inf{U(f,P): P a partition of [a,bl]}.

The lower Riemann integral of f is the number

-b
/ flx)de = sup{ L(f,P) : P a partition of [a,b]}.

el

We say that fis Riemann integrable when these two numbers are equal
and in this case we define the Riemann integral of f to be

L

b b b
fla)yde = / fleyde = | flx)de.

To help cement these definitions, let us consider the function, f: [a,b] = R
defined by

o 1 & rational
o {

0 x irrational,

then for any partition P we will have that Af; = 1 and m; = 0 for every i.

Hence, U(f,P) = (b—a) and L(f,P) = 0. Thus,

b b
/ f)yder =b—aand [ f(x)de =0.

L (L,

In particular, f is not Riemann integrable.
The following helps to explain the terms “upper” and “lower”.

1.3. PROPOSITION. Let [ :a,b] — R be a bounded function and let Py and
Py be any two partitions of (a,b]. Then L{f,P1) < U(f,P2) and /'b flr)de <
e

71), f(x)dx.
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o
T

The following gives an important means of determining if a function is Rie-
mann integrable.

1.4. THEOREM. Let f : [a,b] — R be a bounded function. Then [ is Riemann
integrable if and only if for every ¢ > O there exists a partition P such that
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1.5. DeFINITION. We say that a bounded function f : [a,b] — R satisfies
the Riemann integrability criterion provided thot for every e > 0, there

exists a partition P, such that U(f,P)— L{f,P) < e.

Thus, the above theorem says that a bounded function is Riemann integrable
if and only if it satisfies the Riemanu integrability criterion.
1.6. THEOREM. Let f @ {a,b] — R be a continuous function. Then [ s

Riemann integrable.
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1.7. PROBLEM. Let f(x) = x. Compute U(f.Py) and L(f.Py). Use these
formulas and the Riemann integrability criterion to prove that f is Riemann
integrable on [0,1] and to prove that ]0l xdx = 1/2.

1.8. PROBLEM. Let a < ¢ < d < b and let [ : |a,b] = R be the function
defined by
0 a<xr<c
flzy=<1 c<u<d.
0 d<x<b

Prove that f is Riemann integrable on a,b] and that /(f) fla)de = (d —¢).

4.2. The Riemann-Stieltjes Integral

The Riemann-Stieltjes integral is a slight generalization of the Riemann
¢ (=] o as
integral. The new ingredient in Riemann-Stieltjes integration is a function,

a:la,b] = R

that is increasing, i.e.. # <y implies that o(2) < a(y). It is best to think of
«v as a function that measures a new “length” of subintervals by setting the
length of a subinterval [z, 2] equal to afx;) — afx;_1). One case where
this concept arises is if we imagine that we have a piece of wire of varying
density stretched from a to b and o(x;) — a(x;—y) represents the weight of
the section of wire from x; 1 to x;.

Given a bounded function f : [a,b] — R the Riemann-Sticltjes integral is

denoted
b
/ fdev,

and it is designed to also define a “ signed area” under the graph of f but
now if we want the area of a rectangle to be the length of the base times the
height, then a rectangle from x; y to a; of height & should have area

(o) — alwie)).
Thus, given a bounded function f an increasing function «, a partition
P ={a=xg,....0, = b}, the numbers M; = sup{f(z): z;i—y <2 < x;} and
my = inf{f(x) 2,1 <2 <}, we are led to define the upper Riemann-
Stieltjes sum as

and the lower Riemann-Stieltjes sum as

7t

L(f,P,a) = Z";71,1¢((.\:(;1t,;) — afxi-1)).

i=1
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The upper Riemann-Stieltjes integral of f with respect to « is then
defined to be

—=b
/ fdoo=f{U(f, P, ) : P is a partition of |a, bl}.

Similarly, the lower Riemann-Stieltjes integral of [ with respect to
o is defined to be

-b
fdeoo = sup{L(f, P, ) : P is a partition of [a,b]}.
When
b b
/ fdo = / fdao,

(]
then we say that [ is Riemann-Stieltjes integrable with respect to o

and we let ,
)

Sfdo

e
denote this common value.

We repeat the key facts about Riemann-Stieltjes integration below. Since
the proofs are almost identical to the corresponding proofs in the case of
Riemann integration, we omit the details.

2.1. PROPOSITION. Let f : [a,b] — R be a bounded function, let o : [a,b] — R
be an increasing function and let Py and Pq be partitions of [a,b] with Py a
refinement of Py. Then

L(f,Pr,a) < L{f.Po,or) CU(f, Po,x) <U(fPr, )
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2.2. PROPOSITION. Let f : [a,b] — R be a bounded function, let « : [a,b] —

R be increasing and let Py and Py be any two partitions of [a,b]. Then
b
i

L{f,Pr.o) <U(f, P2, cx) and —]_i}‘(z)(!a < T{ flx)der.
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2.3. THEOREM. Let f : [a,b] — R be a bounded function and let o« [a,b] — R
be increasing. Then f is Riemann-Sticltjes integrable with respect to o if
and only if for every € > 0 there exists a partition P such that U(f, P, a) —
L(f.P,a) <e.
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2.4, DEFINITION. Given an increasing function « : [a,b] — R, we say that a
bounded function [ : |a.b] — R satisfies the Riemann-Stieltjes integra-
bility criterion with respect to o provided that for every ¢ > 0, there
crists a partition P, such that U{(f,P,«) — L(f, P, ) < e.

Thus, the above theorem says that a bounded function is Riemann-Stieltjes
integrable with respect to « if and only if it satisfies the Riemann-Stieltjes
integrability criterion with respect to «.

2.5. THEOREM. Let [ : |a,b] — R be a continuous function and let o
[a, bl = R be an increasing function. Then f is Riemann-Stieltjes integrable
with respect to .






