MATH 4331

Introduction to Real Analysis Fall 2015

First name: Last name: Points:

Assignment 1, due Thursday, September 3, 2:30pm

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 0

Prove that if a sequence $\{p_1, p_2, \dots\}$ in $\mathbb R$ converges to $\lim_{n \to \infty} p_n = p$, then it is bounded, that is, there exists a $L \geq 0$ such that for all $n \in \mathbb N$, $|p_n| \leq L$. Hint: Start with: Convergence of $\{p_n\}_{n \in \mathbb N}$ means that for every $\epsilon > 0$, ... Now *choose any* $\epsilon > 0$, then split the set $\mathbb N$ into two subsets and show the boundedness on each of those subsets.

Problem 1

Suppose x and y are unit vectors in \mathbb{R}^n . Show that if $\|\frac{1}{2}(x+y)\| = 1$, then x = y.

Problem 2

Let $x_0=(a_0,b_0)$ in \mathbb{R}^2 , with $0< a_0< b_0$, and define inductively for each $n\in \mathbb{N}$, $(a_{n+1},b_{n+1})=(\sqrt{a_nb_n},(a_n+b_n)/2).$

- a. Show, using induction, that for each $n\in\mathbb{N}$, $0<\alpha_n<\alpha_{n+1}< b_{n+1}< b_n$
- b. Estimate $b_{n+1}-a_{n+1}$ in terms of b_n-a_n .
- c. Show that there is $c \in \mathbb{R}$ such that $\lim_{n \to \infty} (a_n, b_n) = (c, c)$.

Problem 3

Show that a subset S of \mathbb{R}^n is complete if and only if it is closed.

Problem 4

Let $B_r = \{x \in \mathbb{R}^n : \|x\| < r\}$. Show that a set $S \subset \mathbb{R}^n$ has no cluster point if and only if $S \cap B_r$ is a finite set for each r > 0.