Assignment 2, due Thursday, September 10, 2:30pm

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

The interior A^o of a set $A \subseteq \mathbb{R}^n$ is defined as largest open subset, or equivalently, as the set containing each point $x \in A$ for which there exists $\tau > 0$ such that $B_\tau(x) \subseteq A$.

Show that $A^o = (A^c)^c$, that is, the interior of A is obtained by taking the complement of the closure of the complement of A.

Problem 2

Suppose that A and B are subsets of \mathbb{R}.

a. Show that if A and B are closed, then the set $A \times B = \{(x, y) \in \mathbb{R}^2 : x \in A, y \in B\}$ is closed in \mathbb{R}^2.

b. Likewise, show that if A and B are both open, then $A \times B$ is open.

Problem 3

A set A is dense in B if B is contained in \overline{A}.

a. Show that the set of irrational numbers, $\mathbb{R} \setminus \mathbb{Q}$, is dense in \mathbb{R}.

b. Hence, show that \mathbb{Q} has empty interior.

Problem 4

Show that the union of finitely many compact sets C_1, C_2, \ldots, C_m in \mathbb{R}^n is compact.

Problem 5

Show that the intersection of any family of compact sets $\{C_i\}_{i \in I}$ in \mathbb{R}^n is compact.