MATH 4331

Introduction to Real Analysis

First name:	_ Last name:	Points:
-------------	--------------	---------

Assignment 2, due Thursday, September 10, 2:30pm

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

The interior A° of a set $A \subset \mathbb{R}^n$ is defined as largest open subset, or equivalently, as the set containing each point $x \in A$ for which there exists r > 0 such that $B_r(x) \subset A$.

Show that $A^{\circ} = (\overline{A'})'$, that is, the interior of A is obtained by taking the complement of the closure of the complement of A.

Problem 2

Suppose that A and B are subsets of \mathbb{R} .

- a. Show that if A and B are closed, then the set $A\times B=\{(x,y)\in\mathbb{R}^2:x\in A,y\in B\}$ is closed in $\mathbb{R}^2.$
- b. Likewise, show that if A and B are both open, then $A \times B$ is open.

Problem 3

A set A is dense in B if B is contained in \overline{A} .

- a. Show that the set of irrational numbers, $\mathbb{R} \setminus \mathbb{Q}$, is dense in \mathbb{R} .
- b. Hence, show that O has empty interior.

Problem 4

Show that the union of finitely many compact sets $C_1, C_2, ..., C_m$ in \mathbb{R}^n is compact.

Problem 5

Show that the intersection of any family of compact sets $\{C_i\}_{i\in I}$ in \mathbb{R}^n is compact.