Assignment 3, due Thursday, September 17, 2:30pm

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class or in the section on compactness and extreme values in support of your reasoning.

Problem 1

Show that the Cantor set has empty interior. Hint: The construction of the Cantor set can be described in the following way: \(C_0 = [0, 1], \ C_1 = [0, 1] \setminus (1/3, 2/3), \ C_2 = C_1 \setminus ((1/9, 2/9) \cup (4/9, 5/9) \cup (7/9, 8/9)) \) etc., so at each step open intervals are removed. Note that \((4/9, 5/9)\) appears only for notational convenience.

Problem 2

Let \(f \) be defined on \(\mathbb{R} \) by \(f(x) = x \) if \(x \in \mathbb{Q} \) and \(f(x) = 0 \) otherwise. Show that \(f \) is continuous at \(0 \) but not continuous at any \(a \neq 0 \).

Problem 3

Let \(m : \mathbb{R}^2 \to \mathbb{R} \) be defined by \(m(x, y) = \max\{x, y\} \).

a. Show that \(m \) is continuous.

b. Hence, show that for two real-valued continuous functions \(f \) and \(g \) defined on a set \(S \subseteq \mathbb{R}^n \), the function \(h : S \to \mathbb{R} \) defined by \(h(x) = \max\{f(x), g(x)\} \) is continuous.

Problem 4

Let \(A \) be a compact subset of \(\mathbb{R}^n \). Show that for any \(x \in \mathbb{R}^n \), there is \(a \in A \) which is closest to \(x \) among the points in \(A \), so for any \(y \in A \), \(\|y - x\| \geq \|a - x\| \). Hint: Fix \(x \) and introduce a useful function on \(A \) which you show to be continuous, then quote a result from class.

Problem 5

Assume a real-valued function \(f \) is continuous on \(\mathbb{R}^n \) and satisfies \(f(x) \geq 0 \) for all \(x \in \mathbb{R}^n \) as well as \(\lim_{\|x\| \to \infty} f(x) = 0 \), i.e. for each \(\varepsilon > 0 \) there is \(R > 0 \) such that \(f(x) < \varepsilon \) for all \(x \) with \(\|x\| > R \). Show that \(f \) attains its maximum value.