MATH 4331

Introduction to Real Analysis Fall 2015

First name: L	ast name:	Points:
---------------	-----------	---------

Assignment 4, due Thursday, September 24, 2:30pm

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Show that if S is a connected set in \mathbb{R}^n , then so is its closure \overline{S} .

Problem 2

Suppose that A is a subset of \mathbb{R}^m and B a subset of \mathbb{R}^n . Show that if A and B are connected, then the so is the set $A \times B = \{(x,y) \in \mathbb{R}^{m+n} : x \in A, y \in B\}$.

Problem 3

Let $S = Y \cup G$ be the union of two sets in \mathbb{R}^2 given by

$$Y = \{(0, t) : |t| < 1\}$$

and

$$G = \{(x, \sin(1/x)) : 0 < x \le 1\}.$$

Show that S is connected, but not path connected.

Problem 4

Let $A_1\supset A_2\supset A_3\supset \dots$ be a decreasing sequence of connected compact subsets of \mathbb{R}^n . Show that $\cap_{k\geq 1}A_k$ is connected.

Problem 5

Give an example for a sequence of subsets $A_1\supset A_2\supset A_3\supset \dots$ of \mathbb{R}^2 where the sets A_k are closed and connected and $\cap_{k>1}A_k$ is **not** connected.