MATH 4331/6312: HANDOUT 1

B. G. BODMANN

CONNECTED SETS AND THE INTERMEDIATE VALUE THEOREM

We will see in this section that the intermediate value theorem from calculus is really a consequence of the fact that an interval of real numbers is a connected set. First we need to define this concept.

- 1. **Definition.** A subset A of \mathbb{R}^n is disconnected if there are two open sets U, V that are disjoint, $U \cap V = \emptyset$, each of them has a non-empty intersection with A, and $A \subset U \cup V$. Otherwise, we say that A is connected.
- 2. **Example.** If A is a non-empty set containing a finite number of points in \mathbb{R}^n , then A is disconnected.

The most important example of a connected space is an *interval* in \mathbb{R} , which means either an open interval, closed interval, or half-open interval. The limits can be numbers or $+\infty$ or $-\infty$.

3. **Theorem.** Let $I \subseteq \mathbb{R}$ be an interval or all of \mathbb{R} , then I is a connected set. Conversely, if A is a connected set in \mathbb{R} , then A is an interval.

Proof. Suppose I is an interval but not connected, then we would have $I \subset U \cup V$ where U and V are both non-empty and open, $U \cap I \neq \emptyset$, $V \cap I \neq \emptyset$, and $U \cap V = \emptyset$. Let $a \in U$ and $b \in V$. Without loss of generality, we can assume that a < b (otherwise just change the names of U and V). Let $U_1 = U \cap I \cap [a,b]$, and $V_1 = V \cap I \cap [a,b]$. Then U_1 and V_1 are disjoint, non-empty sets because $a \in U_1$ and $b \in V_1$. Since U_1 is bounded, $c = \sup\{x : x \in U_1\} < \infty$. From $b \in V$, a < b, and V being open, we know there is $\delta > 0$ such that $(v - \delta, v) \subset V_1$. Let δ be the maximal choice that satisfies this inclusion in V_1 (this exists because we know $\delta \leq b - a$). We then know $a \leq c \leq b - \delta$. Moreover, by the assumption on δ , $c \notin V$, otherwise the openness of V would allow us to increase δ .

Since c is not the right limit of I, we also know that $c \notin U$, otherwise by the openness of U and c < b, it would not be the supremum of U_1 .

Hence $c \notin U \cup V$, but this union has I as its subset, so $c \notin I$. Thus, I is not an interval.

Conversely, assume A is a connected set in \mathbb{R} . Take $a,b\in A$ with a< b. To show A is an interval, we prove that each $x\in \mathbb{R}$ with a< x< b satisfies $x\in A$. If this is not the case for some x, we can define $U=(-\infty,x)$ and $V=(x,\infty)$, then $a\in U\cap A$, $b\in V\cap A$ but U and V are open and disjoint, hence A is disconnected. \square

Now we come to a general version of the Intermediate Value Theorem.

4. **Theorem** (Intermediate Value Theorem in \mathbb{R}^n). Let $f: S \subset \mathbb{R}^n \to \mathbb{R}$ be a continuous function and S a connected set. Given $x,y \in S$ and $L \in \mathbb{R}$ with f(x) < L < f(y), then there is $z \in S$ with f(z) = L.

Proof. Suppose there is no such z. Let $X=f^{-1}((-\infty,L))$ and $Y=f^{-1}((L,\infty))$, then X and Y are disjoint, $S=X\cup Y$ and by the continuity both of these sets are open in S. Consequently, from the definition of relative openness, $X=S\setminus \overline{Y}$ and $Y=S\setminus \overline{X}$. Let U and V be open sets in \mathbb{R}^n such that $X=U\cap S$ and $Y=V\cap S$, then $U_1=U\setminus \overline{V}$ and $V_1=V\setminus \overline{U}$ are open and disjoint and we retain the intersection property $X=U\cap S\setminus \overline{V}=U_1\cap S$ and $Y=V\cap S\setminus \overline{U}=V_1\cap S$.

Thus, S is a subset of two open disjoint sets U_1 and V_1 in \mathbb{R}^n , with a non-empty intersection with each of them, which means it is disconnected, contradicting our assumption. Hence, L is in the range of f.

1

We conclude the usual Intermediate Value Theorem by specializing to n=1 and S=I with I an interval.

5. Corollary (Intermediate Value Theorem). Let $I \subseteq \mathbb{R}$ be an interval or the whole real line and let $f: I \to \mathbb{R}$ be continuous. If $x_0, x_1 \in I$, $L \in \mathbb{R}$ and $f(x_0) < L < f(x_1)$, then there is x_2 between x_0 and x_1 with $f(x_2) = L$.

The same type of proof gives another insight that relates continuity and connectedness.

6. Theorem. Let $f: S \subset \mathbb{R}^m \to \mathbb{R}^n$ be continuous. If S is connected, then f(S) is also connected.

Proof. Let A=f(S). Assume A is disconnected, then there exist U,V open disjoint, each having a non-empty intersection with A and $A\subset U\cup V$. By the continuity of $f,f^{-1}(U)$ and $f^{-1}(V)$ are open in S, and satisfy that they are disjoint, have a non-empty intersection with S, and give $S=f^{-1}(U)\cup f^{-1}(V)$. Using the same argument as in the preceding theorem, S is disconnected, contradicting our assumption. \Box

Again specializing to \mathbb{R} , we obtain the following consequence.

7. Corollary. Let $I \subseteq \mathbb{R}$ be an interval. If $f: I \to \mathbb{R}$ is continuous, then f(I) is an interval.

We recall the informal statement that "a real-valued function is continuous if we can draw its graph without lifting the pen." To make this statement precise, we need a stronger form of connectedness.

8. **Definition.** A set $A \subset \mathbb{R}^n$ is called path connected provided that for any two points, $a, b \in A$ there exists a continuous function $f: [0,1] \to A$ such that f(0) = a and f(1) = b.

Intuitively, a space is pathwise connected if and only if you can draw a curve between any two points with no gaps in the curve.

9. **Theorem.** If $A \subset \mathbb{R}^n$ is path connected, then it is connected.

Proof. Suppose A is path connected, but not connected. Then there are open sets U,V with $A\subset U\cup V,$ $U\cap V=\emptyset$ and there are $a\in A\cap U,$ $b\in A\cap V.$ By path connectedness, there is a continuous function $f:[0,1]\to A$ with f(0)=a and f(1)=b. Extending f to all of $\mathbb R$ by f(x)=a if x<0 and f(x)=b if x>1 retains the continuity. This then gives open disjoint sets $f^{-1}(U)$ and $f^{-1}(V)$ whose union contains [0,1] as a subset and $0\in f^{-1}(U),$ $1\in f^{-1}(V),$ so [0,1] is disconnected, which is a contradiction. Hence, A is connected.

- 10. **Definition.** Let $g:[a,b] \to \mathbb{R}$. By the graph of g we mean the set $G=\{(x,g(x)): a \le x \le b\} \subseteq \mathbb{R}^2$.
- 11. **Theorem.** Let $g:[a,b] \to \mathbb{R}$. The function g is continuous if and only if the graph of g is a path connected subset of \mathbb{R}^2 .