MATH 4331/6312: HANDOUT 1

B. G. BODMANN

CONNECTED SETS AND THE INTERMEDIATE VALUE THEOREM

We will see in this section that the intermediate value theorem from calculus is really a consequence
of the fact that an interval of real numbers is a connected set. First we need to define this concept.

1. Definition. A subset A of R" is disconnected if there are two open sets U, V that are disjoint,
UNV =10, each of them has a non-empty intersection with A, and A C U UV. Otherwise, we say
that A is connected.

2. Example. If A is a non-empty set containing a finite number of points in R", then A is disconnected.

The most important example of a connected space is an interval in R, which means either an open
interval, closed interval, or half-open interval. The limits can be numbers or 400 or —oo.

3. Theorem. Let I C R be an interval or all of R, then I is a connected set. Conversely, if A is a
connected set in R, then A is an interval.

Proof. Suppose I is an interval but not connected, then we would have I C U UV where U and V'
are both non-empty and open, UNT #0, VNI #0,and UNV =(. Leta € U and b € V. Without
loss of generality, we can assume that a < b (otherwise just change the names of U and V). Let
Ur=UnIN]a,b], and Vi = VN IN]Ja,b]. Then Uy and V; are disjoint, non-empty sets because
a € Uy and b € V}. Since U; is bounded, ¢ = sup{z : 2 € U1} < oco. From b € V, a < b, and V being
open, we know there is § > 0 such that (v —0,v) C V;. Let § be the maximal choice that satisfies this
inclusion in V; (this exists because we know 6 < b — a). We then know a < ¢ < b — 4. Moreover, by
the assumption on 4, ¢ € V, otherwise the openness of V" would allow us to increase 4.

Since c is not the right limit of 7, we also know that ¢ ¢ U, otherwise by the openness of U and ¢ < b,
it would not be the supremum of Uj.

Hence ¢ ¢ U UV, but this union has I as its subset, so ¢ ¢ I. Thus, I is not an interval.

Conversely, assume A is a connected set in R. Take a,b € A with a < b. To show A is an interval,
we prove that each x € R with a < & < b satisfies x € A. If this is not the case for some x, we can
define U = (—o0,z) and V = (z,00), thena € UN A, b€ VN Abut U and V are open and disjoint,
hence A is disconnected. O

Now we come to a general version of the Intermediate Value Theorem.

4. Theorem (Intermediate Value Theorem in R"). Let f : § C R™ — R be a continuous function and S
a connected set. Given z,y € S and L € R with f(x) < L < f(y), then there is z € S with f(z) = L.

Proof Suppose there is no such z. Let X = f~1((—o0,L)) and Y = f~1((L, 00)), then X and Y are
disjoint, $ = X UY and by the continuity both of these sets are open in S. Consequently, from the
definition of relative openness, X = S\ Y and Y = S\ X. Let U and V be open sets in R™ such that
X=UnSandY =VnNS thenU; =U\V and V; =V \ U are open and disjoint and we retain
the intersection property X =UNS\V=U1NSandY =VNS\U=VnNS§S.

Thus, S is a subset of two open disjoint sets U7 and Vi in R", with a non-empty intersection with
each of them, which means it is disconnected, contradicting our assumption. Hence, L is in the range
of f. O

1



2 B. G. BODMANN

We conclude the usual Intermediate Value Theorem by specializing to n = 1 and S = I with I an
interval.

5. Corollary (Intermediate Value Theorem). Let I C R be an interval or the whole real line and let
f I — R be continuous. If xg,x1 € I, L € R and f(xo) < L < f(x1), then there is x5 between x
and zy with f(za) = L.

The same type of proof gives another insight that relates continuity and connectedness.
6. Theorem. Let f : S C R™ — R" be continuous. If S is connected, then f(S) is also connected.

Proof. Let A = f(S). Assume A is disconnected, then there exist U, V' open disjoint, each having
a non-empty intersection with A and A C U U V. By the continuity of f, f~*(U) and f~1(V)
are open in S, and satisfy that they are disjoint, have a non-empty intersection with .S, and give
S = f~YU) U f~1(V). Using the same argument as in the preceding theorem, S is disconnected,
contradicting our assumption. (]

Again specializing to R, we obtain the following consequence.
7. Corollary. Let I C R be an interval. If f: I — R is continuous, then f(I) is an interval.

We recall the informal statement that “a real-valued function is continuous if we can draw its graph
without lifting the pen.” To make this statement precise, we need a stronger form of connectedness.

8. Definition. A set A C R" is called path connected provided that for any two points, a,b € A there
exists a continuous function f : [0,1] — A such that f(0) = a and f(1) = b.

Intuitively, a space is pathwise connected if and only if you can draw a curve between any two points
with no gaps in the curve.

9. Theorem. If A C R" is path connected, then it is connected.

Proof. Suppose A is path connected, but not connected. Then there are opensets U, V with A C UUV,
UNV = and there are a € ANU, b € ANV. By path connectedness, there is a continuous function
f 00,1 — A with f(0) = a and f(1) = b. Extending f to all of R by f(z) = a if z < 0 and
f(z) = bif x > 1 retains the continuity. This then gives open disjoint sets f~1(U) and f~(V) whose
union contains [0,1] as a subset and 0 € f~1(U), 1 € f~4(V), so [0,1] is disconnected, which is a
contradiction. Hence, A is connected. O

10. Definition. Letg : [a,b] — R. By the graph of g we mean the set G = {(x,g(z)) : a < x < b} C R2.

11. Theorem. Let g : [a,b] — R. The function g is continuous if and only if the graph of g is a path
connected subset of R?.



