Practice Exam 1 – Math 4331/6312 October, 2013

Firs	t name: Last name: Last 4 digits of Student ID:		
1	True-False Problems		
Put a T in the box beside each statement that is true, an F if the statement is false.			
] Every convergent sequence in $\mathbb{R}^{\mathfrak{n}}$ is bounded.		
] Every convergent sequence in $\mathbb{R}^{\mathfrak{n}}$ is Cauchy.		
] If U is an open subset and C is a closed subset of \mathbb{R}^n , then U \ C is an open subset of \mathbb{R}^n .		
	The Cantor set is compact.		
] If $S = [0,1) \cup (1,2]$, then S is a connected subset of \mathbb{R} .		
] If $f:S\subset\mathbb{R}^m\to\mathbb{R}^n$ is continuous, then $f^{-1}(U)$ is open in \mathbb{R}^m for any set U that is open in \mathbb{R}^n .		
] If $S = \{(x,y): 0 \le y \le \frac{1}{x}, x > 0\} \cup \{(0,y): y \in \mathbb{R}\}$ then S is a closed set.		
] If f is differentiable and strictly increasing on \mathbb{R} , then $f'(x)>0$ for all $x\in\mathbb{R}$.		
After completing this part, hand it in to obtain the remaining portion of the exam.			

Practice Exam 1 – Math 4331/6312 October, 2013

First name:	Last name:	Last 4 digits of Student ID:		
In the following problems, you may quote results from class to simplify your answers. You do not need to include a proof of a statement if it was discussed in class.				
2 Problem				
Let $\mathfrak{p}_k=(\frac{1}{k},\frac{1}{k^2})$, $k\in\mathbb{N}$,	define a sequence in \mathbb{R}^2 . Pro	ove that $\lim_{k\to\infty} p_k = (0,0)$.		

Let $E \subset \mathbb{R}^n$. Show that x is a cluster point of E if and only if $x \in \overline{E \setminus \{x\}}$.

Prove that the intersection of two compact sets C_1 and C_2 in \mathbb{R}^n is a compact set.

(a) Consider a function $f\colon S\subset\mathbb{R}^m\to T\subset\mathbb{R}^n.$ State the definition of uniform continuity for f.

(b) Prove that if $f:S\subset\mathbb{R}^m\to T\subset\mathbb{R}^n$ and $g:T\subset\mathbb{R}^n\to\mathbb{R}$ are both uniformly continuous on their domains, then the composition $h=g\circ f, h(x)=g(f(x))$ is uniformly continuous on S.

(Problem 5, continued)

Let 0 $<\varepsilon<$ 1. Use the Mean-Value Theorem to prove that the real-valued, differentiable function

$$f(x) = x^2 \cos(\pi/x)$$

has a point $c\in (0,\varepsilon)$ with f'(c)>1.

(empty page)