$\begin{array}{c} Final\ Practice\ Exam-\ Math\ 4331/6312\\ December,\ 2015 \end{array}$

First name:	Last name:	Last 4 digits student ID:
1 True-False	Problems	
Put a T in the box no	ext to each statement that is true	ne, an F for each statement that is false.
	y = 1 is a closed set.	
If $C \subseteq \mathbb{R}^n$ has to in C , then C is		has a subsequence that converges to a point
$ If S = [0,1) \cup (1) $	[1,2], then S is connected.	
An open subset	of a compact set in \mathbb{R}^n has a co	ompact closure.
All normed real	vector spaces are complete.	
In a metric space	ce (X,d) , the open ball $B_r(x)$, w	with $x \in X$ and $r > 0$, is never closed.
For the remaining	true-false problems, $f: \mathbb{R} \to \mathbb{R}$	is continuous and $A \subset \mathbb{R}$
\square If A is compact	then $f(A)$ is compact.	
\Box If a f function is	is monotonic on $[a, b]$, it is Riem	ann integrable on $[a, b]$.

In the following problems, you may quote statements from class to simplify your answers. You do not need to give a proof of a statement if it was discussed in class.

2 Problem

Let V and W be real vector spaces with two norms $\|\cdot\|_V$ and $\|\cdot\|_W$, respectively. Show that $Z = \{(x,y) : x \in V, y \in W\}$, equipped with $\|(x,y)\| = \max\{\|x\|_V, \|y\|_W\}$ is a normed vector space.

Show that if \mathbb{R} and \mathbb{R}^2 are equipped with the usual (Euclidean) norms, and K_1 and K_2 are two compact subsets of \mathbb{R} , then so is

$$K = \{(x, y) \in \mathbb{R}^2 : x \in K_1, y \in K_2\}.$$

Let A be a connected subset of \mathbb{R}^n . Prove that the closure of A is also connected.

Show that if $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are uniformly continuous, then so is $h = g \circ f, h(x) = g(f(x))$.

Let ℓ^p , $1 \le p < \infty$ be the normed vector space containing each sequence $a = (a_1, a_2, \dots)$ for which $||a||_p = (\sum_{j=1}^{\infty} |a_j|^p)^{1/p} < \infty$. Consider the sequence $\{x_k\}_{k=1}^{\infty}$ with $x_k = (x_{k,1}, x_{k,2}, \dots)$ and

$$x_{k,n} = \begin{cases} 1/n, & n \le 2^k \\ 0, & n > 2^k \end{cases}$$

show that this sequence does not converge with respect to $\|\cdot\|_p$.

Prove that $\{s_n\}_{n=1}^{\infty}$, $s_n(x) = \sin(nx)$ is not an equicontinuous subset of $C([0,\pi])$.

Show that if f is a real-valued function on the interval [a, b] such that

$$u = \inf\{\int_a^b g(x)dx : g \in C([a,b]), g(x) \ge f(x) \text{ for all } x \in [a,b]\}$$

and

$$l = \sup\{\int_a^b h(x)dx : h \in C([a,b]), h(x) \le f(x) \text{ for all } x \in [a,b]\}$$

satisfy u = l, then f is Riemann integrable.

[empty page]