MATH 4331/6312

Introduction to Real Analysis Fall 2017

First name:	Last name:	Points:

Assignment 1, due Thursday, September 7, 10am

Please staple this cover page to your homework. Circle your course number, 4331 or 6312. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 0

Prove that if a sequence $\{p_1,p_2,\ldots\}$ in $\mathbb R$ converges to $\lim_{n\to\infty}p_n=p$, then it is bounded, that is, there exists a $L\geq 0$ such that for all $n\in\mathbb N$, $|p_n|\leq L$. Hint: Start with: Convergence of $\{p_n\}_{n\in\mathbb N}$ means that for every $\varepsilon>0$, ... Now *choose any* $\varepsilon>0$, then split the set $\mathbb N$ into two subsets and show the boundedness of the sequence when the index is taken from either one of those two subsets.

Problem 1

Show that the sequence $\{x_1,x_2,\ldots\}$ defined by $x_1=1$ and $x_{k+1}=\frac{1}{2}\Big(x_k+\frac{3}{x_k}\Big)$ converges to $\sqrt{3}$. Hint: Assume we already know $1\leq\sqrt{3}\leq 2$. Re-express the relationship between x_k and x_{k+1} as

$$\frac{x_{k+1} - \sqrt{3}}{x_{k+1} + \sqrt{3}} = \left(\frac{x_k - \sqrt{3}}{x_k + \sqrt{3}}\right)^2.$$

Problem 2

Suppose x and y are unit vectors in \mathbb{R}^n . Show that if $\|\frac{1}{2}(x+y)\| = 1$, then x = y.

Problem 3

Let $x_0 = (a_0, b_0)$ in \mathbb{R}^2 , with $0 < a_0 < b_0$, and define inductively for each $n \in \mathbb{N}$, $(a_{n+1}, b_{n+1}) = (\sqrt{a_n b_n}, (a_n + b_n)/2)$.

- a. Show, using induction, that for each $n \in \mathbb{N}$, $0 < a_n < a_{n+1} < b_{n+1} < b_n$.
- b. Estimate $b_{n+1} a_{n+1}$ in terms of $b_n a_n$.
- c. Show that there is $c \in \mathbb{R}$ such that $\lim_{n \to \infty} (a_n, b_n) = (c, c)$.

Problem 4

Show that if a set A in \mathbb{R}^n is closed, then it is complete, meaning any Cauchy sequence $\{p_1, p_2, \ldots\}$ in A converges and has a limit in A.