MATH 4331/6312

Introduction to Real Analysis Fall 2017

First name:	Last name:	Points:
First name:	Last name:	Points:

Assignment 4, due Thursday, September 28, 10am

Please staple this cover page to your homework. Circle your course number, Math 4331 or 6312. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let f be a continuous function defined on an **open** subset S of \mathbb{R}^n . Prove that the set $\{(x_1,x_2,\ldots,x_n,y):x\in S,y>f(x)\}$ is an open subset of \mathbb{R}^{n+1} . If useful, abbreviate $(x_1,x_2,\ldots,x_n,y)=(x,y)$.

Problem 2

Show that the function $f(x) = x^p$ on defined on \mathbb{R} is not uniformly continuous if $p \in \{2,3,4,\ldots\}$.

Problem 3

A function $f : \mathbb{R} \to \mathbb{R}$ is called 1-periodic if f(x) = f(x+1) for each $x \in \mathbb{R}$. Show that if f is continuous, then it is uniformly continuous.

Problem 4

Prove that if S is a connected set in \mathbb{R}^n , then so is its closure \overline{S} .

Problem 5

Suppose that A is a subset of \mathbb{R}^m and B a subset of \mathbb{R}^n . Show that if A and B are connected, then the so is the set $A \times B = \{(x,y) \in \mathbb{R}^{m+n} : x \in A, y \in B\}$.

Problem 6

Given that $f:(0,1)\to\mathbb{R}$ is continuous, what are the possible choices for its range f((0,1))? Explain why your list exhausts all possible cases.