MATH 4331/6312

Introduction to Real Analysis Fall 2017

First name:	Las	st name:	Points:

Assignment 6, due Thursday, October 26, 10am

Please staple this cover page to your homework. Circle your course number, 4331 or 6312. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

If a function $f:[a,b]\to\mathbb{R}$ is Lipschitz-continuous with Lipschitz constant C, then prove that for any partition P of [a,b], we have $U(f,P)-L(f,P)\leq C(b-\alpha)\text{mesh}(P)$.

Problem 2

Show that if a real-valued function f is bounded and Riemann integrable on [a,b], so is |f|,|f|(x)=|f(x)|.

Problem 3

Show that if f and g are real-valued, bounded and Riemann integrable on [a,b] and $f(x) \le g(x)$ for each $x \in [a,b]$, then

$$\int_a^b f(x)dx \le \int_a^b g(x)dx.$$

Problem 4

Prove the mean value theorem for integrals: If a real-valued function f is continuous on [a, b], then there is $c \in (a, b)$ such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

Problem 5

Let $f: \mathbb{R} \to \mathbb{R}$ be continous, and fix c > 0. Show that the function

$$G(x) = \frac{1}{c} \int_{0}^{x+c} f(t) dt$$

has a continuous derivative and compute G'(x).