Assignment 7, due Thursday, November 2, 10am

Please staple this cover page to your homework. Circle your course number, 4331 or 6312. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class or on the handout on the Fundamental Theorem of Calculus in support of your reasoning.

Problem 1

Let \(a < b < c \) and \(f \) be a bounded function on \([a, c] \) that is Riemann integrable on \([a, b] \) and on \([b, c] \). Show that \(f \) is Riemann integrable on \([a, c] \) and that

\[
\int_{a}^{c} f(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{b}^{c} f(x) \, dx.
\]

Problem 2

Does the value \(\| (x, y) \| = (|x|^{1/2} + |y|^{1/2})^2 \) for \((x, y) \in \mathbb{R}^2 \) define a norm on \(\mathbb{R}^2 \)? Explain your answer by supporting it with facts.

Problem 3

Let \((V, \| \cdot \|) \) be a normed vector space. Assuming convergent sequences \(\{x_n\}_{n=1}^{\infty} \) and \(\{y_n\}_{n=1}^{\infty} \) in \(V \) with limits \(x \) and \(y \) and a sequence \(\{\alpha_n\}_{n=1}^{\infty} \) in \(\mathbb{R} \) with limit \(\alpha \), show that \(\lim_{n \to \infty} (x_n + y_n) = x + y \) and \(\lim_{n \to \infty} \alpha_n x_n = \alpha x \).

Problem 4

Let \(K \) be a compact subset of \(\mathbb{R}^n \) and let \(C(K, \mathbb{R}^m) \) denote the vector space of all continuous functions from \(K \) to \(\mathbb{R}^m \). Show that if we define \(\| f \|_\infty = \sup_{x \in K} \| f(x) \|_2 \) for each \(f \in C(K, \mathbb{R}^m) \), where \(\| f(x) \|_2 \) is the Euclidean norm of \(f(x) \in \mathbb{R}^m \), then \(\| f \|_\infty \) defines a norm on \(C(K, \mathbb{R}^m) \).

Problem 5

Let \(c_0 \) be the vector space of all convergent sequences \(x = \{x_n\}_{n=1}^{\infty} \) in \(\mathbb{R} \) with \(\lim_{n \to \infty} x_n = 0 \). Let \(\| x \|_\infty = \sup_{n \in \mathbb{N}} |x_n| \).

1. Show that for \(x \in c_0 \) there is \(k \in \mathbb{N} \) such that \(|x_k| = \| x \|_\infty \).

2. Show that \(x \mapsto \| x \|_\infty \) defines a norm on \(c_0 \).