MATH 4331/6312

Introduction to Real Analysis Fall 2017

First name:	Last name:	Points:

Assignment 7, due Thursday, November 2, 10am

Please staple this cover page to your homework. Circle your course number, 4331 or 6312. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class or on the handout on the Fundamental Theorem of Calculus in support of your reasoning.

Problem 1

Let a < b < c and f be a bounded function on [a, c] that is Riemann integrable on [a, b] and on [b, c]. Show that f is Riemann integrable on [a, c] and that

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx.$$

Problem 2

Does the value $\|(x,y)\| = (|x|^{1/2} + |y|^{1/2})^2$ for $(x,y) \in \mathbb{R}^2$ define a norm on \mathbb{R}^2 ? Explain your answer by supporting it with facts.

Problem 3

Let $(V, \|\cdot\|)$ be a normed vector space. Assuming convergent sequences $\{x_n\}_{n=1}^\infty$ and $\{y_n\}_{n=1}^\infty$ in V with limits x and y and a sequence $\{\alpha_n\}_{n=1}^\infty$ in $\mathbb R$ with limit α , show that $\lim_{n\to\infty}(x_n+y_n)=x+y$ and $\lim_{n\to\infty}\alpha_nx_n=\alpha x$.

Problem 4

Let K be a compact subset of \mathbb{R}^n and let $C(K,\mathbb{R}^m)$ denote the vector space of all continuous functions from K to \mathbb{R}^m . Show that if we define $\|f\|_{\infty} = \sup_{x \in K} \|f(x)\|_2$ for each $f \in C(K,\mathbb{R}^m)$, where $\|f(x)\|_2$ is the Euclidean norm of $f(x) \in \mathbb{R}^m$, then $\|f\|_{\infty}$ defines a norm on $C(K,\mathbb{R}^m)$.

Problem 5

Let c_0 be the vector space of all convergent sequences $x=\{x_n\}_{n=1}^\infty$ in $\mathbb R$ with $\lim_{n\to\infty}x_n=0$. Let $\|x\|_\infty=\sup_{n\in\mathbb N}|x_n|$.

- 1. Show that for $x \in c_0$ there is $k \in \mathbb{N}$ such that $|x_k| = ||x||_{\infty}$.
- 2. Show that $x \mapsto ||x||_{\infty}$ defines a norm on c_0 .