MATH 4331/6312

Introduction to Real Analysis Fall 2017

First name:	Last name:	Points:

Assignment 9, due Thursday, November 30, 10am

Please staple this cover page to your homework. Circle your course number, 4331 or 6312. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

A normed vector space V is strictly convex if $\|u\| = \|v\| = \|(u+v)/2\| = 1$ for vectors $u, v \in V$ implies that u = v.

- 1. Show that an inner product space with the norm induced by the inner product, meaning $||x|| = (\langle x, x \rangle)^{1/2}$ for each $x \in V$, is always strictly convex.
- 2. Show that the plane \mathbb{R}^2 with the norm $\|(x_1, x_2)\| = \max\{|x_1|, |x_2|\}$ is not strictly convex.

Problem 2

Prove that a normed vector space $(V, \|\cdot\|)$ is complete if and only if every nested decreasing sequence of closed balls $\overline{B}_{r_1}(\alpha_1) \supseteq \overline{B}_{r_2}(\alpha_2) \supseteq \cdots$ with radii r_j going to zero as $j \to \infty$ has a non-empty intersection $\bigcap_{j=1}^\infty \overline{B}_{r_j}(\alpha_j)$. Note that the balls need not be concentric. Hint: Consider the sequence of center points of the balls.

Problem 3

Find all intervals on which the sequence of real-valued functions $\{f_n\}_{n=1}^{\infty}$ on $\mathbb R$ defined by $f_n(x)=\frac{x^{2n}}{n+x^{2n}}$ converges uniformly. Explain the reasons supporting your answer.

Problem 4

Show that if the sequence of numbers $\{a_n\}_{n=1}^\infty$ satisfies $\sum_{n=1}^\infty |a_n| < \infty$, then the series $\sum_{n=1}^\infty a_n cos(nx)$ converges uniformly on $[0,2\pi]$. This means, the partial sums

$$s_N(x) = \sum_{n=1}^N a_n cos(nx)$$

define a sequence of functions $\{s_N\}_{N=1}^{\infty}$ that converges uniformly on $[0,2\pi]$. Hint: First show that the sequence is Cauchy with respect to $\|\cdot\|_{\infty}$.