The Fundamental Theorem of Calculus

Proposition 1. Let $a \leq \hat{x} \leq b$, $f:[a,b] \to \mathbb{R}$ be a bounded function that is Riemann integrable on [a,b], then f is Riemann integrable on $[a,\hat{x}]$ and if g is the function

$$g(x) = \begin{cases} f(x), & x \in [a, \hat{x}] \\ 0, & else \end{cases}$$

then

$$\int_{a}^{\hat{x}} f(x)dx = \int_{a}^{b} g(x)dx.$$

Proof. The statement on integrability of f on $[a,\hat{x}]$ is equivalent to g being integrable on $[a,\hat{x}]$. Given $\epsilon>0$, then by the integrability of f on [a,b], there is a partition $\mathcal P$ of [a,b] with $U(f,\mathcal P)-L(f,\mathcal P)<\epsilon$. Let $\mathcal Q=\mathcal P\cup\{\hat{x}\},$ then $\mathcal Q$ is a refinement of $\mathcal P$ and so

$$U(f, \mathcal{Q}) - L(f, \mathcal{Q}) \le U(f, \mathcal{P}) - L(f, \mathcal{P}) < \epsilon.$$

Moreover, if $Q = \{x_0, x_1, \dots, x_m = \hat{x}, \dots, x_n\}$ then from g vanishing outside of $[x_0, x_m]$, we have

$$U(g, Q) - L(g, Q) \le U(f, Q) - L(f, Q) < \epsilon.$$

This means g is integrable on [a,b]. Again noting that subintervals outside of $[x_0,x_m]=[a,\hat{x}]$ do not contribute, we let $\mathcal{S}=\mathcal{Q}\cap[x_0,\hat{x}]$, then

$$U(g, \mathcal{S}) - L(g, \mathcal{S}) \le U(g, \mathcal{Q}) - L(g, \mathcal{Q}) < \epsilon$$
.

Thus, the integrability condition holds for g on $[a,\hat{x}]$, or equivalently, for f on $[a,\hat{x}]$.

For the identity between the integrals, let $\mathcal S$ be a partition of $[a,\hat x]$ and $\mathcal P$ a partition of [a,b], $\mathcal Q=\mathcal S\cup\mathcal P$, and $\mathcal R=\mathcal Q\cap[a,\hat x]$, then from g vanishing outside of $[a,\hat x]$,

$$L(f, \mathcal{R}) = L(g, \mathcal{R}) = L(g, \mathcal{Q}) \ge L(g, \mathcal{P})$$

and

$$U(f, \mathcal{R}) = U(g, \mathcal{R}) = U(g, \mathcal{Q}) \le U(g, \mathcal{P})$$
.

Moreover, \mathcal{R} is a refinement of \mathcal{S} , so taking the supremum of $L(f,\mathcal{S})$ over all \mathcal{S} is the same as taking the supremum of $L(f,(\mathcal{S}\cup\mathcal{P})\cap[a,\hat{x}]\}$. By comparing with $L(g,\mathcal{P})$, this gives $\sup_{\mathcal{S}} L(f,\mathcal{S}) \geq \sup_{\mathcal{P}} L(g,\mathcal{P})$. Similarly, $\inf_{\mathcal{S}} U(f,\mathcal{S}) \leq \inf_{\mathcal{P}} U(g,\mathcal{P})$. By integrability, $\sup_{\mathcal{P}} L(g,\mathcal{P}) = \inf_{\mathcal{P}} U(g,\mathcal{P}) = \int_a^b g(x) dx$, so $\sup_{\mathcal{S}} L(f,\mathcal{S}) = \inf_{\mathcal{S}} U(f,\mathcal{S}) = \int_a^{\hat{x}} f(x) dx = \int_a^b g(x) dx$.

Theorem 2 (Fundamental Theorem of Calculus). Let $f : [a,b] \to \mathbb{R}$ be bounded on [a,b], then for $x \in [a,b]$,

$$F(x) = \int_{a}^{x} f(t)dt$$

defines a continuous function. Moreover, if f is continuous at x_0 in [a,b], then $F'(x_0) = f(x_0)$.

Proof. We first note that if $\sup_{a \le x \le b} |f(x)| \le M$, then for $a \le x < y \le b$,

$$\int_a^y f(t)dt - \int_a^x f(t)dt = \int_a^b \chi_{[a,y]}(t)f(t)dt - \int_a^b \chi_{[a,x]}(t)f(t)dt.$$

Using the linearity of integrals then allows us to combine the difference in one integral

$$\int_{a}^{y} f(t)dt - \int_{a}^{x} f(t)dt = \int_{a}^{b} (\chi_{[a,y]}(t) - \chi_{[a,x]}(t))f(t)dt.$$

Choosing a partition $\mathcal{P}=\{a,x,y,b\}$ then gives with $g(t)=\chi_{[a,y]}(t)-\chi_{[a,x]}(t))f(t)$,

$$-M(y-x) \le L(g,\mathcal{P}) \le \int_a^y f(t)dt - \int_a^x f(t)dt \le U(g,\mathcal{P}) \le M(y-x).$$

This shows that F is Lipschitz continuous.

For the differentiability, let $a < x_0 < x_0 + h < b$, then using the continuity of f shows that for any $\epsilon > 0$, there is $\delta > 0$ such that if $|x - x_0| < \delta$, we have $|f(x) - f(x_0)| < \epsilon$.

Let h > 0, then

$$\frac{1}{h}(F(x_0+h)-F(x_0)) - f(x_0) = \frac{1}{h} \int_a^{x_0+h} (1-\chi_{[a,x_0]})(t)f(t)dt - f(x_0)$$

$$= \frac{1}{h} \int_{x_0}^{x_0+h} f(t)dt - \frac{1}{h} \int_{x_0}^{x_0+h} f(x_0)dt$$

$$= \frac{1}{h} \int_{x_0}^{x_0+h} (f(t)-f(x_0))dt.$$

Next, if $0 < h < \delta$, then from $|f(t) - f(x_0)| < \epsilon$, we get

$$\left|\frac{1}{h}(F(x_0+h)-F(x_0))-f(x_0)\right| \le \frac{1}{h} \int_{x_0}^{x_0+h} |f(t)-f(x_0)| dt < \epsilon.$$

This implies $\lim_{h\to 0^+} (\frac{1}{h}(F(x_0+h)-F(x_0))-f(x_0))=0$. The case h<0 is handled similarly by writing

$$\frac{1}{h}(F(x_0+h)-F(x_0)) = -\frac{1}{-h}(F(x_0)-F(x_0+h))$$

and expressing the right-hand side as an integral on the interval $[x_0+h,x_0]$.

Corollary 3. Let $f:[a,b] \to \mathbb{R}$ be continuous. If $F:[a,b] \to \mathbb{R}$ is a continuous function that is differentiable on (a,b) and F'(x)=f(x) then $\int_a^b f(x)dx=F(b)-F(a)$.

Proof. Let $G(x)=\int_a^x f(t)dt+F(a)$, then for a< x< b, we have that G'(x)=F'(x) and G(a)=F(a). Hence, G(x)=F(x) for a< x< b. Since $|G(b)-G(x)|=|\int_x^b fd\alpha|\leq K(\alpha(b)-\alpha(x))$, where $K=\sup\{|f(x)|:a\leq x\leq b\}$, we see that $G(b)=\lim_{x\to b^-}G(x)=\lim_{x\to b^-}F(x)=F(b)$, since F is continuous. Therefore, $F(b)=G(b)=\int_a^b f(x)dx+F(a)$ and the formula follows. \Box