Practice Exam 1 - Math 4331/6312 October, 2017

First	rst name: Last name: Last name	ast 4 digits of Student ID:
1	True-False Problems	
Put	t a T in the box beside each statement that is true, an F if the	statement is false.
	Every convergent sequence in \mathbb{R}^n is bounded.	
	Every convergent sequence in \mathbb{R}^n is Cauchy.	
	If U is an open subset and C is a closed subset of \mathbb{R}^n , then	$U \setminus C$ is an open subset of \mathbb{R}^n .
	The Cantor set is compact.	
	If $S = [0, 1) \cup (1, 2]$, then S is a connected subset of \mathbb{R} .	
	If $f:S\subset\mathbb{R}^m\to\mathbb{R}^n$ is continuous, then $f^{-1}(U)$ is open in \mathbb{R}^n	$^{\mathfrak{n}}$ for any set ${\mathsf U}$ that is open in ${\mathbb R}^{\mathfrak{n}}.$
	$\hfill If \ K \subseteq \mathbb{R}^n$ has the property that every convergent sequence i	n K is bounded, then K is compact.
	If $S = \{(x,y) : 0 \le y \le \frac{1}{x}, x > 0\} \cup \{(0,y) : y \in \mathbb{R}\}$ then S is a	a closed set.

After completing this part, hand it in to obtain the remaining portion of the exam.

Practice Exam 1 - Math 4331/6312 October, 2017

Firs	First name: Last name: Last 4 digits of Stude	nt ID:		
In the following problems, you may quote results from class to simplify your answers. You do not need to include a proof of a statement if it was discussed in class.				
2	2 Problem			
Let	Let $p_k=(\frac{1}{k},\frac{1}{k^2})$, $k\in\mathbb{N}$, define a sequence in \mathbb{R}^2 . Prove that $\lim_{k\to\infty}p_k=(0,0)$.			

Let $f:[\mathfrak{a},\mathfrak{b}]\to\mathbb{R}$, $\mathfrak{a}<\mathfrak{b}$, be a continuous function. Recall that the graph of f is the set

$$G = \{(x, f(x)) : \alpha \le x \le b\} \subset \mathbb{R}^2$$
.

Show that G is a closed set in \mathbb{R}^2 .

Let $K \subseteq \mathbb{R}$ be a compact set. State why $\sup\{x : x \in K\}$ exists and then prove that there is $x_0 \in K$ with $x_0 = \sup\{x : x \in K\}$.

Prove that the intersection of two compact sets C_1 and C_2 in \mathbb{R}^n is a compact set.

(a) Consider a function $f:S\subset\mathbb{R}^m\to T\subset\mathbb{R}^n.$ State the definition of uniform continuity for f.

(b) Prove that if $f:S\subset\mathbb{R}^m\to T\subset\mathbb{R}^n$ and $g:T\subset\mathbb{R}^n\to\mathbb{R}$ are both uniformly continuous on their domains, then the composition $h=g\circ f, h(x)=g(f(x))$ is uniformly continuous on S.

(Problem 6, continued)

Let $f:\mathbb{R}\to\mathbb{R}$ be continuous. Show that the graph $G=\{(x,f(x)):x\in\mathbb{R}\}$ has a complement $X=\mathbb{R}^2\setminus G$ that is disconnected.

(empty page)