MATH 4331/6312 Introduction to Real Analysis Fall 2019

Assignment 3, due Thursday, September 12, 10am

Please staple this cover page to your homework. Circle your course number, Math 4331 or 6312. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class or in preceding homework in support of your reasoning.

Problem 1

Show that the Cantor set has empty interior. Hint: The construction of the Cantor set can be described in the following way: $C_0 = [0,1]$, $C_1 = [0,1] \setminus (1/3,2/3)$, $C_2 = C_1 \setminus ((1/9,2/9) \cup (4/9,5/9) \cup (7/9,8/9))$ etc., so at each step open intervals are removed. Note that (4/9,5/9) appears only for notational convenience.

Problem 2

Let A and B be subsets of \mathbb{R}^n , $A \subset B$. The set A is dense in B if B is contained in \overline{A} .

- a. Show that for n=1, the set of irrational numbers, $\mathbb{R}\setminus\mathbb{Q}$, is dense in \mathbb{R} .
- b. Hence, show that \mathbb{Q} has empty interior.

Problem 3

Let f be defined on \mathbb{R} by f(x) = x if $x \in \mathbb{Q}$ and f(x) = 0 otherwise. Show that f is continuous at 0 but not continuous at any $\alpha \neq 0$.

Problem 4

Let $m : \mathbb{R}^2 \to \mathbb{R}$ be defined by $m(x, y) = \max\{x, y\}$.

- a. Show that m is continuous.
- b. Hence, show that for two real-valued continuous functions f and g defined on a set $S \subset \mathbb{R}^n$, the function $h: S \mapsto \mathbb{R}$ defined by $h(x) = \max\{f(x), g(x)\}$ is continuous.