MATH 4331/6312

Introduction to Real Analysis Fall 2019

First name:	Last name:	Points:
-------------	------------	---------

Assignment 4, due Thursday, September 19, 10am

Please staple this cover page to your homework. Circle your course number, Math 4331 or 6312. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let f be a continuous function defined on an **open** subset S of \mathbb{R}^n . Prove that the set $\{(x_1,x_2,\ldots,x_n,y):x\in S,y>f(x)\}$ is an open subset of \mathbb{R}^{n+1} . If useful, abbreviate $(x_1,x_2,\ldots,x_n,y)=(x,y)$.

Problem 2

Show that the function $f(x) = x^p$ on defined on \mathbb{R} is not uniformly continuous if $p \in \{2,3,4,\ldots\}$.

Problem 3

A function $f : \mathbb{R} \to \mathbb{R}$ is called 1-periodic if f(x) = f(x+1) for each $x \in \mathbb{R}$. Show that if f is continuous, then it is uniformly continuous.

Problem 4

Let A be a compact subset of \mathbb{R}^n . Show that for any $x \in \mathbb{R}^n$, there is $a \in A$ which is closest to x among the points in A, so for any $y \in A$, $\|y - x\| \ge \|a - x\|$. Hint: Fix x and introduce a useful function on A which you show to be continuous, then quote a result from class.

Problem 5

Assume a real-valued function f is continuous on \mathbb{R}^n and satisfies $f(x) \geq 0$ for all $x \in \mathbb{R}^n$ as well as $\lim_{\|x\| \to \infty} f(x) = 0$, i.e. for each $\epsilon > 0$ there is R > 0 such that $f(x) < \epsilon$ for all x with $\|x\| > R$. Show that f attains its maximum value.