MATH 4331/6312

Introduction to Real Analysis Fall 2019

First name:	Last name:	Points:

Assignment 5, due Thursday, September 26, 10am

Please staple this cover page to your homework. Circle your course number, Math 4331 or 6312. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let $S \subset \mathbb{R}^n$ and $T \subset \mathbb{R}^m$, $f: S \to T$ and $g: T \to \mathbb{R}^k$ be uniformly continuous functions, then show that $h = g \circ f$ is uniformly continuous from S to \mathbb{R}^k .

Problem 2

Show that if S is a connected subset of \mathbb{R}^n , then the closure \overline{S} is connected.

Problem 3

Let the surface of the planet Mars be represented by the sphere $S = \{(x,y,z): x^2 + y^2 + z^2 = 1\}$ and assume the temperature $T: S \to \mathbb{R}$ is a continuous function on S. Show that there is a point $(x,y,z) \in S$ such that T(x,y,z) = T(-x,-y,-z).

Hint: Consider f(x, y, z) = T(x, y, z) - T(-x, -y, -z), compare f(x, y, z) and f(-x, -y, -z).

Problem 4

Let f be a continuous function from the ball $B_1=\{(x,y):x^2+y^2\leq 1\}$ in \mathbb{R}^2 to \mathbb{R} . Show that this $f:B_1\to\mathbb{R}$ cannot be one-to-one.