MATH 4331/6312
Introduction to Real Analysis
Fall 2019
First name: \qquad Last name: \qquad Points:

Assignment 6, due Thursday, October 17, 8:30am

Please staple this cover page to your homework. Circle your course number, Math 4331 or 6312. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Using the Intermediate Value Theorem, show that if f is a real-valued continuous function on $[0,1]$ and f is one-to-one, then it is monotone.

Problem 2

Let f and g be differentiable functions on an interval $(a, b), a<b$. If there is $x_{0} \in(a, b)$ for which $f\left(x_{0}\right)=g\left(x_{0}\right)$ and $f(x) \leq g(x)$ for all $x \in(a, b)$, prove that $f^{\prime}\left(x_{0}\right)=g^{\prime}\left(x_{0}\right)$.

Problem 3

Show the product rule: If f and g are differentiable functions on an interval (a, b) and $x_{0} \in(a, b)$, then $(f g)^{\prime}\left(x_{0}\right)=f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)$.

Problem 4

If f and g are differentiable on $[a, b]$ and $f^{\prime}(x)=g^{\prime}(x)$ for all $a<x<b$, prove that $g(x)=f(x)+C$ for some constant $\mathrm{C} \in \mathbb{R}$.

Problem 5

Assume f is differentiable on $[a, b]$ and $f^{\prime}(a)<0<f^{\prime}(b)$. Show the following:
(a) There are c , d with $\mathrm{a}<\mathrm{c}<\mathrm{d}<\mathrm{b}$ and $\mathrm{f}(\mathrm{c})<\mathrm{f}(\mathrm{a})$ as well as $\mathrm{f}(\mathrm{d})<\mathrm{f}(\mathrm{b})$.
(b) The minimum of f on $[a, b]$ occurs at $x_{0} \in(a, b)$.
(c) Hence, there is $x_{0} \in(a, b)$ with $f^{\prime}\left(x_{0}\right)=0$.

