MATH 4331/6312

Introduction to Real Analysis Fall 2019

Points:
Points:

Assignment 7, due Thursday, October 24, 8:30am

Please staple this cover page to your homework. Circle your course number, 4331 or 6312. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

If a function $f:[a,b]\to\mathbb{R}$ is Lipschitz-continuous with Lipschitz constant C, then prove that for any partition P of [a,b], we have $U(f,P)-L(f,P)\leq C(b-a)\text{mesh}(P)$.

Problem 2

Show that if a real-valued function f is bounded and Riemann integrable on [a, b], so is |f|, |f|(x) = |f(x)|.

Problem 3

Show that if f and g are real-valued, bounded and Riemann integrable on [a,b] and $f(x) \leq g(x)$ for each $x \in [a,b]$, then

$$\int_a^b f(x) dx \le \int_a^b g(x) dx.$$

Problem 4

Prove the mean value theorem for integrals: If a real-valued function f is continuous on [a,b], then there is $c \in (a,b)$ such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

Problem 5

Let C be the Cantor set as defined in class (or Assignment 3), and

$$f(x) = \begin{cases} 1, & x \in C \\ 0, & \text{else} \end{cases}$$

for $x \in [0, 1]$. Show that f is Riemann integrable on [0, 1] and that $\int_0^1 f(x) dx = 0$.