Practice Exam 1 - Math 4331/6312 October, 2019

Firs	st name: Last name:	Last 4 digits of Student ID:
1	True-False Problems	
Put	t a T in the box beside each statement that is true, an F if	the statement is false.
	$igcup$ Every convergent sequence in \mathbb{R}^n is bounded.	
	\square Every convergent sequence in $\mathbb{R}^{\mathfrak{n}}$ is Cauchy.	
	$\hfill \hfill \hfill$ If U is an open subset and C is a closed subset of \mathbb{R}^n , t	hen $U \setminus C$ is an open subset of \mathbb{R}^n .
	The Cantor set is compact.	
	If $S = [0, 1) \cup (1, 2]$, then S is a connected subset of \mathbb{R} .	
] If $f:S\subset\mathbb{R}^m\to\mathbb{R}^n$ is continuous, then $f^{-1}(U)$ is open in	n \mathbb{R}^m for any set U that is open in \mathbb{R}^n .
	$\hfill If \ K \subseteq \mathbb{R}^n$ has the property that every convergent sequen	nce in K is bounded, then K is compact.
	If $S = \{(x,y) : 0 \le y \le \frac{1}{x}, x > 0\} \cup \{(0,y) : y \in \mathbb{R}\}$ then $S = \{(x,y) : 0 \le y \le \frac{1}{x}, x > 0\} \cup \{(0,y) : y \in \mathbb{R}\}$	is a closed set.

After completing this part, hand it in to obtain the remaining portion of the exam.

Practice Exam 1 - Math 4331/6312 October, 2017

First name:	Last name:	Last 4 digits of Student I	D:
3.	may quote results from class to atement if it was discussed in cl		You do not

2 Problem

Prove that if a subset A of \mathbb{R}^n has the property that every Cauchy sequence $\{a_k\}_{k=1}^\infty$ in A converges and has a limit $\alpha \in A$, then A is a closed set.

Let $p_k=(\frac{1}{k},\frac{1}{k^2})$, $k\in\mathbb{N}$, define a sequence in \mathbb{R}^2 . Prove that $\lim_{k\to\infty}p_k=(0,0)$.

Let $f:[\alpha,b]\to\mathbb{R},\ \alpha< b,$ be a continuous function. Recall that the graph of f is the set

$$G = \{(x, f(x)) : \alpha \le x \le b\} \subset \mathbb{R}^2$$
.

Show that G is a closed set in \mathbb{R}^2 .

Let $K\subseteq \mathbb{R}$ be a compact set. Explain why there is $x\in K$ with $x\geq y$ for any $y\in K$.

(a) Consider a function $f:S\subset\mathbb{R}^m\to T\subset\mathbb{R}^n.$ State the definition of Lipschitz continuity for f.

(b) Prove that if $f: S \subset \mathbb{R}^m \to T \subset \mathbb{R}^n$ and $g: T \subset \mathbb{R}^n \to \mathbb{R}$ are both Lipschitz continuous on their domains, then the composition $h = g \circ f, h(x) = g(f(x))$ is Lipschitz continuous on S.

(Problem 6, continued)

Let $f:\mathbb{R}\to\mathbb{R}$ be continuous. Show that the graph $G=\{(x,f(x)):x\in\mathbb{R}\}$ has a complement $X=\mathbb{R}^2\setminus G$ that is disconnected.

(empty page)