Assignment 5, due Thursday, March 10, 2:30pm

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1
Let \(f(x) = \frac{x}{2} + \frac{1}{x} \). Use some basic calculus to show that \(f \) maps \([1, 2]\) into \([1, 2]\), and use the mean value theorem to show that it is a contraction mapping. What is the value of the unique fixed point \(x^* \)? If you choose \(x_1 = \frac{3}{2} \) as your starting value, estimate \(|x^* - x_n|\) for \(n \in \mathbb{N} \).

Problem 2
Let \(f(x) = x^2 - 5 \). Show that \(f \) has a root \(x^* \) somewhere in the interval \([2, 3]\). Calculate Newton’s \(g(x) \) and prove that \(g \) maps \([2, 3]\) into \([2, 3]\), with \(g'(x) \leq \frac{1}{2} \) for \(x \in [2, 3] \). Prove that if we perform Newton’s method with \(x_1 = 2 \), then \(|x_n - x^*| \leq \frac{1}{2^n} \).

Problem 3
Let \(f(x) = x - \cos(x) \) so if \(x^* \) is a root for \(f \), then \(\cos(x^*) = x^* \). Compute Newton’s \(g(x) \) and find concrete numbers \(a \) and \(b \) with \(0 \leq a \leq b \leq 1 \) such that \(g \) maps \([a, b]\) into \([a, b]\) and it is a contraction mapping. How does the Lipschitz constant of \(g \) compare with the one we had in class when we discussed the fixed point for \(\cos x \)?

Problem 4
Let \(a, y_0 \in \mathbb{R} \). Solve the initial value problem \(y'(x) = ay(x), y(0) = y_0 \) on the interval \([0, \frac{1}{2a}]\) with the help of the contraction mapping theorem.

1. First show that \(T \) as defined in class is a contraction mapping on \(C([0, \frac{1}{2a}]) \).
2. Let \(f_1(t) = y_0 \) and define \(f_{n+1} = T(f_n) \) for \(n \in \mathbb{N} \) as discussed in class. Compute \(f_2 \) and \(f_3 \). Can you guess \(f_n \)?