MATH 4332

Introduction to Real Analysis Spring 2016

First name: Last name: Points:	
--------------------------------	--

Assignment 6, due Thursday, March 24, 2:30pm

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let $f(x) = x^3 - 2$. Explain why $x^* = 2^{1/3}$ is the unique (real) root of f. Show that $1.25 < 2^{1/3} < 1.26$. Use Newton's method to compute $2^{1/3}$ to eight decimal places (8 correct digits following the decimal point), starting from $x_1 = 1.25$. Using a calculator or a software package for computations is encouraged, however only basic arithmetic is allowed.

Problem 2

Let $h: [a, b] \times \mathbb{R} \to \mathbb{R}$ be C^{∞} , that is, all iterated partial derivatives with respect to the two variables are continuous on $[a, b] \times \mathbb{R}$, and T be defined as before with an initial value y_0 .

Show that for any $f_1 \in C([a,b])$, $f_n \equiv T^{n-1}f_1$ has n-1 continuous derivatives. Use this to conclude that the unique solution f to the differential equation f'(x) = h(x, f(x)) with initial value $f(a) = y_0$ is arbitrarily often continuously differentiable on [a, b].

Problem 3

Let h_1 and h_2 be real-valued Lipschitz-continuous functions on $[a, b] \times \mathbb{R}$ and f_1 and f_2 be solutions of $f'_1(x) = h_1(x, f_1(x))$ and $f'_2(x) = h_2(x, f_2(x))$ with initial values $y_0 = f_1(a) = f_2(a)$. Show that if $h_1(x, y) \le h_2(x, y)$ for each $(x, y) \in [a, b] \times \mathbb{R}$, then $f_1(x) \le f_2(x)$ for each $x \in [a, b]$.

Problem 4

Find the Taylor polynomials of order 3 at the point a for the choices of the function f given below and estimate the error of approximating f by its Taylor polynomial at the point b.

- 1. $f(x) = \tan x$, $a = \pi/4$, b = 3/4;
- 2. $f(x) = \sqrt{1+x^2}$, a = 0, b = 0.1;
- 3. $f(x) = x^4$, a = 1, b = 0.99.

Problem 5

Use the convergence of the Taylor series of $\sin(x)$ about $x = \pi/6$ to approximate $\sin(31^\circ)$ to 10 decimal places.