MATH 4332 Introduction to Real Analysis Spring 2016

First name: _____ Last name: _____ Points:

Assignment 9, due Tuesday, May 3, 2:30pm

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Recall that from the results in class, $|x| = \frac{\pi}{2} - \frac{4}{\pi} \sum_{j=1}^{\infty} \frac{1}{(2j-1)^2} \cos((2j-1)x)$ for each $x \in [-\pi,\pi]$ where the series converges uniformly and also with respect to the metric induced by the norm $\|\cdot\|_2$, with $\|f\|_2 = \left(\int_{-\pi}^{\pi} |f(x)|^2 dx\right)^{1/2}$.

- a. Prove that if f is bounded and Riemann integrable on $[-\pi,\pi]$ and $S_N f$ denotes the N-th partial sum of the Fourier series, then $\lim_{N\to\infty} ||S_N f||_2^2 = ||f||_2^2$.
- b. Use this result together with the concrete choice of f(x) = |x| to show that

$$\sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{\pi^4}{90} \,.$$

Hint: Split the sum into two sums, over even and odd k.

Problem 2

Let g and h be real-valued functions on \mathbb{R} such that g is differentiable at a and h is differentiable at b. Show that $f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = g(x_1)h(x_2)$ is differentiable at $x_0 = (a, b)$.

Problem 3

Let $f : \mathbb{R}^n \to \mathbb{R}$ be given by $f(x) = \frac{\|x\|^4}{1+\|x\|^2}$ Use the chain rule to show that f is differentiable at each $x \in \mathbb{R}^n$ and compute Df(x).

Problem 4

Let $f : \mathbb{R}^2 \to \mathbb{R}^2$, $f(x, y) = (x^2 - y^2, 2xy)$. For which $(x, y) \in \mathbb{R}^2$ is there a ball $B_{\epsilon}(x, y)$ with some $\epsilon > 0$ so that f restricted to this ball has an inverse? Explain your answer.